如图1, 是 的直径, 是 延长线上一点, 切 于点 , 交 于点 ,交 的延长线于点 .
(1)求证: 是等腰三角形;
(2) 于 点,交 于 点,过 点作 ,交 于点 ,交 于 点,连接 ,如图2,若 , ,求 的值.
在平面直角坐标系中,已知点 A(﹣2,0), B(2,0), C(3,5).
(1)求过点 A, C的直线解析式和过点 A, B, C的抛物线的解析式;
(2)求过点 A, B及抛物线的顶点 D的⊙ P的圆心 P的坐标;
(3)在抛物线上是否存在点 Q,使 AQ与⊙ P相切,若存在请求出 Q点坐标.
如图, 是 的直径, , ,连接 .
(1)求证: ;
(2)若直线 为 的切线, 是切点,在直线 上取一点 ,使 , 所在的直线与 所在的直线相交于点 ,连接 .
①试探究 与 之间的数量关系,并证明你的结论;
② 是否为定值?若是,请求出这个定值;若不是,请说明理由.
如图,抛物线 经过点 和点 与 轴的另一交点为点 ,点 是直线 上一动点,过点 作 轴,交抛物线于点 .
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点 ,使得 是等边三角形?若存在,求出点 的坐标;若不存在,请说明理由;
(3)以 为圆心, 为半径作 ,当 与坐标轴相切时,求出 的半径.
如图,抛物线为常数,与轴交于,两点,点为抛物线的顶点,点的坐标为,,连接并延长与过,,三点的相交于点.
(1)求点的坐标;
(2)过点作的切线交轴于点.
①如图1,求证:;
②如图2,连接,,,当,时,求的值.
试题篮
()