如图, 是 的弦, 切 于点 , ,垂足为 , 是 的半径,且 .
(1)求证: 平分 ;
(2)若点 是优弧 上一点,且 ,求扇形 的面积.(计算结果保留
如图, 为半圆 的直径, 为 延长线上一点, 切半圆 于点 ,连接 .作 于点 ,交半圆 于点 .已知 , .
(1)求证: .
(2)求半圆 的半径 的长.
如图,在三角形 中, , ,以 为直径作 交 于点 ,交 于点 ,直线 是 的切线, 为切点,交 的延长线于点 .
(1)求证: ;
(2)求 的值.
如图, 是 的直径, 为弦, 的平分线交 于点 ,过点 的切线交 的延长线于点 .
求证:(1) ;
(2) .
如图,已知直线 与 相切于点 ,直线 与 相交于 , 两点.
(1)求证: ;
(2)若 ,求图中阴影部分的面积.
我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 三分角器.图1是它的示意图,其中 与半圆 的直径 在同一直线上,且 的长度与半圆的半径相等; 与 垂直于点 , 足够长.
使用方法如图2所示,若要把 三等分,只需适当放置三分角器,使 经过 的顶点 ,点 落在边 上,半圆 与另一边 恰好相切,切点为 ,则 , 就把 三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点 , , , 在同一直线上, ,垂足为点 , .
求证: .
如图,四边形 内接于圆 , , 为直径,过点 作圆 的切线交 的延长线于点 ,过 的三等分点 (靠近点 作 的平行线交 于点 ,连接 .
(1)求证: ;
(2)求证: ;
(3)当 , 时,求 的长.
如图,点 在 外, 是 的切线, 为切点,直线 与 相交于点 、 .
(1)若 ,求证: ;
(2)小明发现, 在一定范围内变化时,始终有 成立.请你写出推理过程.
如图,已知: 是 的直径,点 在 上, 是 的切线, 于点 , 是 延长线上一点, 交 于点 ,连接 、 .
(1)求证: 平分 .
(2)若 ,
①求 的度数;
②若 的半径为 ,求线段 的长.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图, 是 的直径,点 、 在 上,且 ,连接 、 ,过点 作 的切线,分别与 、 的延长线交于点 、 .
(1)求证: ;
(2)若 , ,求线段 的长.
如图,在 中, ,以 为直径的 与 相交于点 ,过点 作 的切线交 于点 .
(1)求证: ;
(2)若 的半径为5, ,求 的长.
如图1,平行四边形 中, , , ,点 在边 上运动,以 为圆心, 为半径的 与对角线 交于 , 两点.
(1)如图2,当 与边 相切于点 时,求 的长;
(2)不难发现,当 与边 相切时, 与平行四边形 的边有三个公共点,随着 的变化, 与平行四边形 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的 的值的取值范围 .
如图,已知 是 的直径, 是 延长线上一点, 切 于点 , 是 的弦, ,垂足为 .
(1)求证: .
(2)过点 作 交 于点 ,交 于点 ,连接 ,若 , ,求 的长.
试题篮
()