如图, 是以 为直径的半圆 的切线, 为半圆上一点, , , 的延长线相交于点 .
(1)求证: 是半圆 的切线;
(2)连接 ,求证: ;
(3)若 , ,求 的长.
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.
如图,已知一次函数 的图象与反比例函数 的图象交于点 ,且与 轴交于点 ,第一象限内点 在反比例函数 的图象上,且以点 为圆心的圆与 轴, 轴分别相切于点 ,
(1)求 的值;
(2)求一次函数的表达式;
(3)根据图象,当 时,写出 的取值范围.
已知 内接于 , , ,点 是 上一点.
(Ⅰ)如图①,若 为 的直径,连接 ,求 和 的大小;
(Ⅱ)如图②,若 ,连接 ,过点作 的切线,与 的延长线交于点 ,求 的大小.
如图,已知 , 是 的直径,过点 作 的切线交 的延长线于点 , 的弦 交 于点 ,且 .
(1)求证: ;
(2)连接 交 于点 ,过点 作 于点 ,若 , ,求 的长.
我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 三分角器.图1是它的示意图,其中 与半圆 的直径 在同一直线上,且 的长度与半圆的半径相等; 与 垂直于点 , 足够长.
使用方法如图2所示,若要把 三等分,只需适当放置三分角器,使 经过 的顶点 ,点 落在边 上,半圆 与另一边 恰好相切,切点为 ,则 , 就把 三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点 , , , 在同一直线上, ,垂足为点 , .
求证: .
如图, 是 外的一点, 、 是 的两条切线, 、 是切点, 交 于点 ,延长 交 于点 ,交 的延长交于点 ,连接 .
(1)求证: ;
(2)设 为 的中点, 交 于点 ,若 的半径为3, ,求 的值.
如图,在 中, ,以 的中点 为圆心, 为直径的圆交 于 , 是 的中点, 交 的延长线于 .
(1)求证: 是圆 的切线:
(2)若 , ,求 的长.
如图,在中,直径垂直于不过圆心的弦,垂足为点,连接,点在上,且
(1)求证:;
(2)过点作的切线交的延长线于点,试判断与是否相等,并说明理由;
(3)设半径为4,点为中点,点在上,求线段的最小值.
如图,在 中, ,以 为直径的 交 于点 ,交 于点 ,过点 作 ,与过点 的切线相交于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
如图,四边形 是平行四边形,以点 为圆心, 为半径的 与 相切于点 ,与 相交于点 , 的延长线交 于点 ,连接 交 于点 .求 和 的度数.
如图, 是 的直径,点 在 上,连接 、 ,直线 与 的延长线相交于点 , , 交直线 于点 , 与 相交于点 .
(1)求证:直线 是 的切线;
(2)若 的半径为3, ,求 的长.
如图, 是 的内接三角形, , .连接 并延长,交 于点 ,连接 .过点 作 的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求线段 的长.
已知 的两边分别与 相切于点 , , 的半径为 .
(1)如图1,点 在点 , 之间的优弧上, ,求 的度数;
(2)如图2,点 在圆上运动,当 最大时,要使四边形 为菱形, 的度数应为多少?请说明理由;
(3)若 交 于点 ,求第(2)问中对应的阴影部分的周长(用含 的式子表示).
试题篮
()