优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 切线的性质 / 解答题
初中数学

如图, BD 是半径为3的 O 的一条弦, BD = 4 2 ,点 A O 上的一个动点(不与点 B D 重合),以 A B D 为顶点作 ABCD

(1)如图2,若点 A 是劣弧 BD ^ 的中点.

①求证: ABCD 是菱形;

②求 ABCD 的面积.

(2)若点 A 运动到优弧 BD ̂ 上,且 ABCD 有一边与 O 相切.

①求 AB 的长;

②写出 ABCD 对角线所夹锐角的正切值.

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC BAC = 42 ° ,点 D O 上一点.

(Ⅰ)如图①,若 BD O 的直径,连接 CD ,求 DBC ACD 的大小;

(Ⅱ)如图②,若 CD / / BA ,连接 AD ,过点作 O 的切线,与 OC 的延长线交于点 E ,求 E 的大小.

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E F O 上,且 BF ̂ = 2 BE ̂ ,连接 OE AF ,过点 B O 的切线,分别与 OE AF 的延长线交于点 C D

(1)求证: COB = A

(2)若 AB = 6 CB = 4 ,求线段 FD 的长.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知 AB O 的任意一条直径.

(1)用图1,求证: O 是以直径 AB 所在直线为对称轴的轴对称图形;

(2)已知 O 的面积为 4 π ,直线 CD O 相切于点 C ,过点 B BD CD ,垂足为 D ,如图2.

求证:① 1 2 B C 2 = 2 BD

②改变图2中切点 C 的位置,使得线段 OD BC 时, OD = 2 2

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 直径,点 C D O 上的两点,且 AD ̂ = CD ̂ ,连接 AC BD 交于点 E O 的切线 AF BD 延长线相交于点 F A 为切点.

(1)求证: AF = AE

(2)若 AB = 8 BC = 2 ,求 AF 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AC O 的直径, AC BD 交于点 E PB O 于点 B

(1)求证: PBA = OBC

(2)若 PBA = 20 ° ACD = 40 ° ,求证: ΔOAB ΔCDE

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 的中点 O 为圆心, AB 为直径的圆交 AC D E BC 的中点, DE BA 的延长线于 F

(1)求证: FD 是圆 O 的切线:

(2)若 BC = 4 FB = 8 ,求 AB 的长.

来源:2021年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, D 是以 AB 为直径的 O 上一点,过点 D 的切线 DE AB 的延长线于点 E ,过点 B BC DE AD 的延长线于点 C ,垂足为点 F

(1)求证: AB = BC

(2)若 O 的直径 AB 为9, sin A = 1 3

①求线段 BF 的长;

②求线段 BE 的长.

来源:2021年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 是切点, AC O 的直径,连接 OP ,交 O 于点 D ,交 AB 于点 E

(1)求证: BC / / OP

(2)若 E 恰好是 OD 的中点,且四边形 OAPB 的面积是 16 3 ,求阴影部分的面积;

(3)若 sin BAC = 1 3 ,且 AD = 2 3 ,求切线 PA 的长.

来源:2021年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° O BC 边上一点,以 O 为圆心, OB 长为半径的 O AC 边相切于点 D ,交 BC 于点 E

(1)求证: AB = AD

(2)连接 DE ,若 tan EDC = 1 2 DE = 2 ,求线段 EC 的长.

来源:2021年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径. BC O 的弦,弦 ED 垂直 AB 于点 F ,交 BC 于点 G .过点 C O 的切线交 ED 的延长线于点 P

(1)求证: PC = PG

(2)判断 P G 2 = PD PE 是否成立?若成立,请证明该结论;

(3)若 G BC 中点, OG = 5 sin B = 5 5 ,求 DE 的长.

来源:2021年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.

小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆” AP BP 的连接点 P O 上,当点 P O 上转动时,带动点 A B 分别在射线 OM ON 上滑动, OM ON .当 AP O 相切时,点 B 恰好落在 O 上,如图2.

请仅就图2的情形解答下列问题.

(1)求证: PAO = 2 PBO

(2)若 O 的半径为5, AP = 20 3 ,求 BP 的长.

来源:2021年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学切线的性质解答题