优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题
初中数学

如图,AB是⊙O的直径,点CD在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点EF,连接BF

(1)求证:BF是⊙O的切线;

(2)已知圆的半径为1,求EF的长.

来源:2016年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 的直径, AC ̂ = BC ̂ ,连接

(1)求证:

(2)若直线 的切线, 是切点,在直线 上取一点 ,使 所在的直线与 所在的直线相交于点 ,连接

①试探究 之间的数量关系,并证明你的结论;

EB CD 是否为定值?若是,请求出这个定值;若不是,请说明理由.

来源:2017年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知⊙ O的半径为2, AB为直径, CD为弦. ABCD交于点 M,将 CD ̂ 沿 CD翻折后,点 A与圆心 O重合,延长 OAP,使 APOA,连接 PC

(1)求 CD的长;

(2)求证: PC是⊙ O的切线;

(3)点 G ADB ̂ 的中点,在 PC延长线上有一动点 Q,连接 QGAB于点 E.交 BC ̂ 于点 FFBC不重合).问 GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 C为△ ABD的外接圆上的一动点(点 C不在 BAD ̂ 上,且不与点 BD重合),∠ ACB=∠ ABD=45°

(1)求证: BD是该外接圆的直径;

(2)连结 CD,求证: 2 AC = BC + CD

(3)若△ ABC关于直线 AB的对称图形为△ ABM,连接 DM,试探究 DM 2AM 2BM 2三者之间满足的等量关系,并证明你的结论.

来源:2016年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

我们知道,顶点坐标为 ( h , k ) 的抛物线的解析式为 y = a ( x - h ) 2 + k ( a 0 ) .今后我们还会学到,圆心坐标为 ( a , b ) ,半径为 r 的圆的方程 ( x - a ) 2 + ( y - b ) 2 = r 2 ,如:圆心为 P ( - 2 , 1 ) ,半径为3的圆的方程为 ( x + 2 ) 2 + ( y - 1 ) 2 = 9

(1)以 M ( - 3 , - 1 ) 为圆心, 3 为半径的圆的方程为    

(2)如图,以 B ( - 3 , 0 ) 为圆心的圆与 y 轴相切于原点, C B 上一点,连接 OC ,作 BD OC ,垂足为 D ,延长 BD y 轴于点 E ,已知 sin AOC = 3 5

①连接 EC ,证明: EC B 的切线;

②在 BE 上是否存在一点 Q ,使 QB = QC = QE = QO ?若存在,求点 Q 的坐标,并写出以 Q 为圆心,以 QB 为半径的 Q 的方程;若不存在,请说明理由.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BC O 的直径, AD O 的弦, AD BC 于点 E ,连接 AB CD ,过点 E EF AB ,垂足为 F AEF = D

(1)求证: AD BC

(2)点 G BC 的延长线上,连接 AG DAG = 2 D

①求证: AG O 相切;

②当 AF BF = 2 5 CE = 4 时,直接写出 CG 的长.

来源:2020年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中,点 P AB ̂ 的中点,弦 AD PC 互相垂直,垂足为 M BC 分别与 AD PD 相交于点 E N ,连接 BD MN

(1)求证: N BE 的中点.

(2)若 O 的半径为8, AB ̂ 的度数为 90 ° ,求线段 MN 的长.

来源:2020年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图1,点为矩形对角线上一点,过点,分别交于点.若的面积为的面积为,则   

(2)如图2,点内一点(点不在上),点分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(3)如图3,点内一点(点不在上),过点,与各边分别相交于点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(4)如图4,点四等分.请你在圆内选一点(点不在上),设围成的封闭图形的面积为围成的封闭图形的面积为的面积为的面积为,根据你选的点的位置,直接写出一个含有的等式(写出一种情况即可).

来源:2020年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,与直线相离,过圆心作直线的垂线,垂足为,且交两点之间).我们把点称为关于直线的“远点“,把的值称为关于直线的“特征数”.

(1)如图2,在平面直角坐标系中,点的坐标为.半径为1的与两坐标轴交于点

①过点画垂直于轴的直线,则关于直线的“远点”是点  (填“”.“ ”、“ ”或“关于直线的“特征数”为  

②若直线的函数表达式为.求关于直线的“特征数”;

(2)在平面直角坐标系中,直线经过点,点是坐标平面内一点,以为圆心,为半径作.若与直线相离,点关于直线的“远点”.且关于直线的“特征数”是,求直线的函数表达式.

来源:2020年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接

(1)求的度数;

(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;

(3)分别记的面积为,当时,求弦的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:对角线互相垂直且相等的四边形叫做垂等四边形.

(1)下面四边形是垂等四边形的是    ;(填序号)

①平行四边形;②矩形;③菱形;④正方形

(2)图形判定:如图1,在四边形 ABCD 中, AD / / BC AC BD ,过点 D BD 垂线交 BC 的延长线于点 E ,且 DBC = 45 ° ,证明:四边形 ABCD 是垂等四边形.

(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 ABCD 内接于 O 中, BCD = 60 ° .求 O 的半径.

来源:2020年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组对角互余的四边形叫做对余四边形.

理解:

(1)若四边形 ABCD 是对余四边形,则 A C 的度数之和为        

证明:

(2)如图1, MN O 的直径,点 A B C O 上, AM CN 相交于点 D

求证:四边形 ABCD 是对余四边形;

探究:

(3)如图2,在对余四边形 ABCD 中, AB = BC ABC = 60 ° ,探究线段 AD CD BD 之间有怎样的数量关系?写出猜想,并说明理由.

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AD 平分 BAC BC 于点 D O AB 上一点,经过点 A D O 分别交 AB AC 于点 E F

(1)求证: BC O 的切线;

(2)若 BE = 8 sin B = 5 13 ,求 O 的半径;

(3)求证: A D 2 = AB · AF

来源:2020年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示:的边相切于点,与分别交于点的直径.连接,过,连接交于点

(1)求证:直线相切;

(2)求证:

(3)若时,过两点在线段上),求的长.

来源:2020年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题试题