在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
如图, ,点 为射线 上的一动点.过点 作 于点 .点 在 内,且满足 , .
(1)当 时,求点 到 的距离;
(2)在射线 上是否存在一定点 ,使得 ?若存在,请用直尺(不带刻度)和圆规作出点 (不必写作法,但要保留作图痕迹),并求 的长;若不存在,说明理由.
如图,已知 是 外一点.用两种不同的方法过点 作 的一条切线.
要求:(1)用直尺和圆规作图;
(2)保留作图的痕迹,写出必要的文字说明.
如图, 在 中, ,按下列步骤作图:①以点 为圆心, 适当长为半径画弧, 与 , 分别交于点 , ;②分别以 , 为圆心, 大于 的长为半径画弧, 两弧交于点 ;③作射线 交 于点 ;④过点 作 于点 . 下列结论正确的是
A . B . C . D .
已知 和点 ,如图.
(1)以点 为一个顶点作△ ,使△ ,且△ 的面积等于 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)
(2)设 、 、 分别是 三边 、 、 的中点, 、 、 分别是你所作的△ 三边 、 、 的中点,求证: △ .
(1)如图1,已知 垂直平分 ,垂足为 , 与 相交于点 ,连接 .求证: .
(2)如图2,在 中, , 为 的中点.
①用直尺和圆规在 边上求作点 ,使得 (保留作图痕迹,不要求写作法);
②在①的条件下,如果 ,那么 是 的中点吗?为什么?
如图,已知等边 ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)
(1)作 的外心 ;
(2)设 是 边上一点,在图中作出一个正六边形 ,使点 ,点 分别在边 和 上.
如图,在每个小正方形的边长为1的网格中, 的顶点 , 均落在格点上,点 在网格线上,且 .
(Ⅰ)线段 的长等于 .
(Ⅱ)以 为直径的半圆与边 相交于点 ,若 , 分别为边 , 上的动点,当 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 , ,并简要说明点 , 的位置是如何找到的(不要求证明) .
两个城镇 , 与一条公路 ,一条河流 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 , 的距离必须相等,到 和 的距离也必须相等,且在 的内部,请画出该山庄的位置 .(不要求写作法,保留作图痕迹.
如图,已知 ,及线段 , .
(1)仅用没有刻度的直尺和圆规分别在射线 、 上确定点 、点 ,使得 , (保留作图痕迹,不要作法);
(2)若 , , ,则 的面积为 .
已知: .
求作: ,使
(1)如图1,以点 为圆心,任意长为半径画弧,分别交 , 于点 、 ;
(2)如图2,画一条射线 ,以点 为圆心, 长为半径画弧,交 于点 ;
(3)以点 为圆心, 长为半径画弧,与第2步中所画的弧交于点 ;
(4)过点 画射线 ,则 .
根据以上作图步骤,请你证明 .
“直角”在初中几何学习中无处不在.
如图,已知 ,请仿照小丽的方式,再用两种不同的方法判断 是否为直角(仅限用直尺和圆规).
已知线段 ,按如下步骤作图:①作射线 ,使 ;②作 的平分线 ;③以点 为圆心, 长为半径作弧,交 于点 ;④过点 作 于点 ,则
A. |
|
B. |
|
C. |
|
D. |
|
试题篮
()