优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 翻折变换(折叠问题) / 计算题
初中数学

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,已知 AB = 1 BC = 3 ,点 E 在边 CD 上移动,连接 AE ,将多边形 ABCE 沿直线 AE 翻折,得到多边形 AB ' C ' E ,点 B C 的对应点分别为点 B ' C '

(1)当 B ' C ' 恰好经过点 D 时(如图 1 ),求线段 CE 的长;

(2)若 B ' C ' 分别交边 AD CD 于点 F G ,且 DAE = 22 . 5 ° (如图 2 ) ,求 ΔDFG 的面积;

(3)在点 E 从点 C 移动到点 D 的过程中,求点 C ' 运动的路径长.

来源:2017年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,将边长为6的正方形纸片 ABCD 对折,使 AB DC 重合,折痕为 EF ,展平后,再将点 B 折到边 CD 上,使边 AB 经过点 E ,折痕为 GH ,点 B 的对应点为 M ,点 A 的对应点为 N

(1)若 CM = x ,则 CH =                            (用含 x 的代数式表示);

(2)求折痕 GH 的长.

来源:2016年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)计算题