如图,把腰长为8的等腰直角三角板 的一直角边 放在直线 上,按顺时针方向在 上转动两次,使得它的斜边转到 上,则直角边 两次转动所扫过的面积为 .
请认真阅读下面的数学小探究系列,完成所提出的问题:
(1)探究1:如图1,在等腰直角三角形 中, , ,将边 绕点 顺时针旋转 得到线段 ,连接 .求证: 的面积为 .(提示:过点 作 边上的高 ,可证 )
(2)探究2:如图2,在一般的 中, , ,将边 绕点 顺时针旋转 得到线段 ,连接 .请用含 的式子表示 的面积,并说明理由.
(3)探究3:如图3,在等腰三角形 中, , ,将边 绕点 顺时针旋转 得到线段 ,连接 .试探究用含 的式子表示 的面积,要有探究过程.
如图,正方形 的对角线相交于点 , 绕点 旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的
A. B. C. D.
如图,已知正方形 的边长为3, 、 分别是 、 边上的点,且 ,将 绕点 逆时针旋转 ,得到 .若 ,则 的长为 .
如图,在 中, , , ,将 绕点 逆时针旋转 得到△ ,连接 ,则 的长为
A. |
6 |
B. |
8 |
C. |
10 |
D. |
12 |
将矩形 绕点 顺时针旋转 ,得到矩形 .
(1)如图,当点 在 上时.求证: ;
(2)当 为何值时, ?画出图形,并说明理由.
已知 中, , , 、 分别是 、 的中点, 将 绕点 按顺时针方向旋转一个角度 得到△ ,连接 、 ,如图 1 .
(1) 求证: ;
(2) 如图 2 ,当 时, 设 与 交于点 ,求 的值 .
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 沿对角线 剪开,得到 和 .并且量得 , .
操作发现:
(1)将图1中的 以点 为旋转中心,按逆时针方向旋转 ,使 ,得到如图2所示的△ ,过点 作 的平行线,与 的延长线交于点 ,则四边形 的形状是 .
(2)创新小组将图1中的 以点 为旋转中心,按逆时针方向旋转,使 、 、 三点在同一条直线上,得到如图3所示的△ ,连接 ,取 的中点 ,连接 并延长至点 ,使 ,连接 、 ,得到四边形 ,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 沿着 方向平移,使点 与点 重合,此时 点平移至 点, 与 相交于点 ,如图4所示,连接 ,试求 的值.
如图,等边三角形 的边长为4,点 是 的中心, ,绕点 旋转 ,分别交线段 、 于 、 两点,连接 ,给出下列四个结论:① ;② ;③四边形 的面积始终等于 ;④ 周长的最小值为6.上述结论中正确的个数是
A.1B.2C.3D.4
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
边长为6的等边 中,点 、 分别在 、 边上, , .
(1)如图1,将 沿射线 方向平移,得到△ ,边 与 的交点为 ,边 与 的角平分线交于点 ,当 多大时,四边形 为菱形?并说明理由.
(2)如图2,将 绕点 旋转 ,得到△ ,连接 、 .边 的中点为 .
①在旋转过程中, 和 有怎样的数量关系?并说明理由;
②连接 ,当 最大时,求 的值.(结果保留根号)
如图, 点的坐标为 , 点的坐标为 , 点的坐标为 , 点的坐标为 ,小明发现:线段 与线段 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是 .
试题篮
()