优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 旋转的性质 / 解答题
初中数学

如图, ΔABC ΔCDE 是等边三角形,连接 AD ,取 AD 的中点 P ,连接 BP 并延长至点 M ,使 PM = BP ,连接 AM EM AE ,将 ΔCDE 绕点 C 顺时针旋转.

(1)如图1,当点 D BC 上,点 E AC 上时,则 ΔAEM 的形状为  

(2)将 ΔCDE 绕点 C 顺时针旋转至图2的位置,请判断 ΔAEM 的形状,并说明理由;

(3)若 CD = 1 2 BC ,将 ΔCDE 由图1位置绕点 C 顺时针旋转 α ( 0 ° α < 360 ° ) ,当 ME = 3 CD 时,请直接写出 α 的值.

来源:2018年辽宁省铁岭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,点 E 是正方形 ABCD CD 上任意一点,以 DE 为边作正方形 DEFG ,连接 BF ,点 M 是线段 BF 中点,射线 EM BC 交于点 H ,连接 CM

(1)请直接写出 CM EM 的数量关系和位置关系;

(2)把图1中的正方形 DEFG 绕点 D 顺时针旋转 45 ° ,此时点 F 恰好落在线段 CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;

(3)把图1中的正方形 DEFG 绕点 D 顺时针旋转 90 ° ,此时点 E G 恰好分别落在线段 AD CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.

来源:2018年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, E AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF EG 分别过点 B C F = 30 °

(1)求证: BE = CE

(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF AD 重合时停止转动,若 EF EG 分别与 AB BC 相交于点 M N (如图 2 )

①求证: ΔBEM ΔCEN

②若 AB = 2 ,求 ΔBMN 面积的最大值;

③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin EBG 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a b 为常数, a 0 ) x 轴相交于另一点 A ( 3 , 0 ) .直线 l : y = x 在第一象限内和此抛物线相交于点 B ( 5 , t ) ,与抛物线的对称轴相交于点 C

(1)求抛物线的解析式;

(2)在 x 轴上找一点 P ,使以点 P O C 为顶点的三角形与以点 A O B 为顶点的三角形相似,求满足条件的点 P 的坐标;

(3)直线 l 沿着 x 轴向右平移得到直线 l ' l ' 与线段 OA 相交于点 M ,与 x 轴下方的抛物线相交于点 N ,过点 N NE x 轴于点 E .把 ΔMEN 沿直线 l ' 折叠,当点 E ' 恰好落在抛物线上时(图 2 ) ,求直线 l ' 的解析式;

(4)在(3)问的条件下(图 3 ) ,直线 l ' y 轴相交于点 K ,把 ΔMOK 绕点 O 顺时针旋转 90 ° 得到△ M ' OK ' ,点 F 为直线 l ' 上的动点.当△ M ' FK ' 为等腰三角形时,求满足条件的点 F 的坐标.

来源:2018年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图 1 所示, 在四边形 ABCD 中, 点 O E F G 分别是 AB BC CD AD 的中点, 连接 OE EF FG GO GE

(1) 证明: 四边形 OEFG 是平行四边形;

(2) 将 ΔOGE 绕点 O 顺时针旋转得到 ΔOMN ,如图 2 所示, 连接 GM EN

①若 OE = 3 OG = 1 ,求 EN GM 的值;

②试在四边形 ABCD 中添加一个条件, 使 GM EN 的长在旋转过程中始终相等 . (不 要求证明)

来源:2018年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AD > AB ,点 P CD 边上的任意一点(不含 C D 两端点),过点 P PF / / BC ,交对角线 BD 于点 F

(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF QF AD 于点 E

求证: ΔDEF 是等腰三角形;

(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C F ' B .设旋转角为 α ( 0 ° < α < 180 ° )

①若 0 ° < α < BDC ,即 D F ' BDC 的内部时,求证:△ D P ' C D F ' B

②如图3,若点 P CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan DB F ' 的值,如果不能,请说明理由.

来源:2018年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 E 为边 AB 上一动点,连接 CE 并将其绕点 C 顺时针旋转 90 ° 得到 CF ,连接 DF ,以 CE CF 为邻边作矩形 CFGE GE AD AC 分别交于点 H M GF CD 延长线于点 N

(1)证明:点 A D F 在同一条直线上;

(2)随着点 E 的移动,线段 DH 是否有最小值?若有,求出最小值;若没有,请说明理由;

(3)连接 EF MN ,当 MN / / EF 时,求 AE 的长.

来源:2017年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

来源:2017年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 中, AB = AC ,把 ΔABC A 点沿顺时针方向旋转得到 ΔADE ,连接 BD CE 交于点 F

(1)求证: ΔAEC ΔADB

(2)若 AB = 2 BAC = 45 ° ,当四边形 ADFC 是菱形时,求 BF 的长.

来源:2016年贵州省毕节地区中考数学试卷
  • 题型:未知
  • 难度:未知

已知: ΔAOB ΔCOD 均为等腰直角三角形, AOB = COD = 90 ° .连接 AD BC ,点 H BC 中点,连接 OH

(1)如图1所示,易证: OH = 1 2 AD OH AD

(2)将 ΔCOD 绕点 O 旋转到图2,图3所示位置时,线段 OH AD 又有怎样的关系,并选择一个图形证明你的结论.

来源:2017年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等腰直角三角形, BAC = 90 ° ,将 ΔABC 绕点 C 顺时针方向旋转得到△ A ' B ' C ,记旋转角为 α ,当 90 ° < α < 180 ° 时,作 A ' D AC ,垂足为 D A ' D B ' C 交于点 E

(1)如图1,当 CA ' D = 15 ° 时,作 A ' EC 的平分线 EF BC 于点 F

①写出旋转角 α 的度数;

②求证: EA ' + EC = EF

(2)如图2,在(1)的条件下,设 P 是直线 A ' D 上的一个动点,连接 PA PF ,若 AB = 2 ,求线段 PA + PF 的最小值.(结果保留根号)

来源:2019年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

通过对下面数学模型的研究学习,解决问题.

【模型呈现】

如图,在 Rt Δ ABC ACB = 90 ° ,将斜边 AB 绕点 A 顺时针旋转 90 ° 得到 AD ,过点 D DE AC 于点 E ,可以推理得到 ΔABC ΔDAE ,进而得到 AC = DE BC = AE

我们把这个数学模型称为“ K 型”.

推理过程如下:

【模型应用】

如图,在 Rt Δ ABC 内接于 O ACB = 90 ° BC = 2 ,将斜边 AB 绕点 A 顺时针旋转一定的角度得到 AD ,过点 D DE AC 于点 E DAE = ABC DE = 1 ,连接 DO O 于点 F

(1)求证: AD O 的切线;

(2)连接 FC AB 于点 G ,连接 FB .求证: F G 2 = GO · GB

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, C = 90 ° Rt Δ ABC 绕点 A 顺时针旋转到 Rt Δ ADE 的位置,点 E 在斜边 AB 上,连接 BD ,过点 D DF AC 于点 F

(1)如图1,若点 F 与点 A 重合,求证: AC = BC

(2)若 DAF = DBA

①如图2,当点 F 在线段 CA 的延长线上时,判断线段 AF 与线段 BE 的数量关系,并说明理由;

②当点 F 在线段 CA 上时,设 BE = x ,请用含 x 的代数式表示线段 AF

来源:2016年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直角 ΔABC 的三个顶点分别是 A ( 3 , 1 ) B ( 0 , 3 ) C ( 0 , 1 )

(1)将 ΔABC 以点 C 为旋转中心旋转 180 ° ,画出旋转后对应的△ A 1 B 1 C 1

(2)分别连接 A B 1 B A 1 后,求四边形 A B 1 A 1 B 的面积.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①, AD 为等腰直角 ΔABC 的高,点 A 和点 C 分别在正方形 DEFG 的边 DG DE 上,连接 BG AE

(1)求证: BG = AE

(2)将正方形 DEFG 绕点 D 旋转,当线段 EG 经过点 A 时,(如图②所示)

①求证: BG GE

②设 DG AB 交于点 M ,若 AG : AE = 3 : 4 ,求 GM MD 的值.

来源:2016年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学旋转的性质解答题