优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 黄金分割 / 解答题
初中数学

再读教材:

宽与长的比是 5 1 2 (约为 0 . 618 ) 的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示: MN = 2 )

第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB ,并把 AB 折到图③中所示的 AD 处.

第四步,展平纸片,按照所得的点 D 折出 DE ,使 DE ND ,则图④中就会出现黄金矩形.

问题解决:

(1)图③中 AB =   (保留根号);

(2)如图③,判断四边形 BADQ 的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

实际操作

(4)结合图④,请在矩形 BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

来源:2018年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形中,,点上,将沿折叠,点恰好落在对角线上的点,上一点,经过点

(1)求证:的切线;

(2)在边上截取,点是线段的黄金分割点吗?请说明理由.

来源:2019年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知的中垂线于点,交于点,有下面3个结论:

是等腰三角形;

③点D是线段AC的黄金分割点.
请你从以上结论中只选一个加以证明

  • 题型:未知
  • 难度:未知

初中数学黄金分割解答题