如图,一次函数的图象与反比例函数的图象交于P(-2,1)、Q(1,)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出一次函数的值大于反比例函数的值的的取值范围.
如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与轴平行,纸板的另两个顶点恰好是直线与双曲线的交点.
(1)求和的值;
(2)设双曲线在之间的部分为,让一把三角尺的直角顶点在上滑动,两直角边始终与坐标轴平行,且与线段交于两点,请探究是否存在点使得,写出你的探究过程和结论.
已知一次函数y=2x-k与反比例函数的图像相交于A和B两点.,如果有一个交点A的横坐标为3,
(1)求k的值;
(2)求A、B两点的坐标;
(3)根据图象写出一次函数的值大于反比例函数的值的的取值范围
(4)求△AOB的面积;
如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
x(cm) |
10 |
15 |
20 |
25 |
30 |
y(g) |
30 |
20 |
15 |
12 |
10 |
(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;
(2)当砝码的质量为24g时,活动托盘B与点O的距离是多少?
(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,-2).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=的图象上,则( )
A.y1<y2<y3 | B.y3<y2<y1 | C.y3<y1<y2 | D.y2<y1<y3 |
试题篮
()