优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,在平行四边形ABCD中,E为边AD延长线上的一点,且DAE的黄金分割点,即BEDC于点F,已知,求CF的长 .

  • 题型:未知
  • 难度:未知

如图,⊙O是△ABC的外接圆,BC是⊙O的直径,



O

 

D是劣弧中点,BDAC于点E.

                          
⑴求证:AD2=DE·DB
⑵若BC=13,CD=5,求DE的长

  • 题型:未知
  • 难度:未知

如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.

(1)求证:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的长。

  • 题型:未知
  • 难度:未知

(本题满分10分)如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5,这个矩形的长宽各是多少?

  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,ADBC,∠B=90°,∠C=45°,AD=1,BC=4,EAB中点,EFDCBC于点F,求EF的长.

  • 题型:未知
  • 难度:未知

(满分l4分)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为点H.
(1)求证:AH·AB=AC2
(2)若过点A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE·AF=AC2
(3)若过点A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP·AQ=AC2是否成立(不必证明).

  • 题型:未知
  • 难度:未知

(满分l3分)如图,在△ABC中,∠A=90°,AB=4,AC=3,点M是AB上的动点(不与A,B重合),过点M作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN,令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?

  • 题型:未知
  • 难度:未知

(满分l4分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长度的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB—BC—CP于点E.点P,Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P,Q运动的时间是t s(t>O).
(1)当t=2时,AP=________,点Q到AC的距离是_________;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,也请说明理由.

  • 题型:未知
  • 难度:未知

(满分l2分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.

(1)求证:PB是⊙O的切线;
(2)已知PA=,BC=1,求⊙O的半径.

  • 题型:未知
  • 难度:未知

(每小题8分,共16分)
(1)化简:(a-
(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连结AD,若∠B=∠BAD,求证:△BAC∽△BDA.

  • 题型:未知
  • 难度:未知

(满分l2分)小林想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如图,小林边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小林落在墙上的影子高度CD="1.2" m,CE="0.8" m,CA="30" m(点A,E,C在同一直线上).已知小林的身高EF是1.7 m,请你帮小林求出楼高AB.(结果精确到0.1 m)

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦ABBE分别与小圆相切于点CFADBE相交于点G,连接BD

(1)求BD的长;
(2)求∠ABE+2∠D的度数;
(3)求的值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,在梯形中,,以为直径的相切于.已知,边大6.

(1)求边的长.
(2)在直径上是否存在一动点,使以为顶点的三角形与相似?若存在,求出的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分10分)
如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P。

(1)连结PA,若PA=PB,试判断⊙P与X轴的位置关系,并说明理由;
(2)当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?

  • 题型:未知
  • 难度:未知

(本小题满分8分)
如图,为⊙O的直径,

(1)求证:
(2)求AB长.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题