如图,E是正方形ABCD的边AB上的动点, EF⊥DE交BC于点F.若正方形的边长为4, AE=,BF=.则 与的函数关系式为 .
为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 米.
如图,M是△ABC的BC边上的一点,AM的延长线交△ABC的外接圆于D,已知:AD=12cm, BD=CD=6cm,则DM的长为________cm.
如图,正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN,当BM= ,四边形ABCN的面积最大。
青年路两旁原有路灯212盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型高效节能灯,且相邻两盏灯的距离变为54米,则需更换新型节能灯 盏.
如图,矩形ABCD中,E为DC的中点,AD: AB= :2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②△EBP∽△EFB;③△ABP∽△ECP;④AOAP=OB2.其中正确的序号是_______________.(把你认为正确的序号都填上)
如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B,D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是_________.
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是 .
将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是 .
如图,巳知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 _________ (结果保留根号).
△ABC中,AB=9cm,AC=6cm,D是AC上的一点,且AD=2cm,过点D作直线DE交AB于点E,使所得的三角形与原三角形相似,则AE= _________ cm.
试题篮
()