如图,点A1,A2,A3,…,点B1,B2,B3,…,分别在射线OM,ON上.OA1=1,A1B1=2O A1,A1 A2=2O A1,A2A3=3OA1,A3 A 4=4OA1,….A1B1∥A2B2∥A3B3∥A4B4∥….则A2B2= ,AnBn= (n为正整数).
在等腰梯形ABCD中,且AD=,∠B=45°.直角三角板含角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若是以AB为腰的等腰三角形,则CF的长等于 。
.如图,已知△中,=6,= 8,过直角顶点作⊥,垂足为,再过作⊥,垂足为,过作⊥,垂足为,再过作⊥,垂足为,…,这样一直做下去,得到了一组线段,,,…,则= ,(其中n为正整数)= .
如图,已知在△ABC中,AB=3,AC=2,D是边AB上的一 点,∠ACD=∠B,∠BAC的平分线AQ与CD、BC分别相交于点P和点Q,那么的值等于 ▲
我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形” .
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如图,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1是 ;
(2)如图,四边形DGHI是(1)中△EDA的内接正方形,则第2个正方形DGHI的边长a2= ;继续在图2中的△HGA中按上述方法作第3个内接正方形;…以此类推,则第n个内接正方形的边长an= .(n为正整数)
一天,小青想利用影子测量校园内一根旗杆的高度,在同
一时刻内,小青的影长为2米,旗杆的影长为20米,若
小青的身高为1.60米,则旗杆的高度为 米.
数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 4.2米。
.如图,△ABC中,D,E分别为AC,BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为___________.
设抛物线与X轴交于两不同的点(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=900.
(1)求m的值和该抛物线的解析式;
(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似,若存在,求出点P的坐标,若不存在,请说明理由.
(3)连结AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k·FH,若点M不在该抛物线上,求k的取值范围.
试题篮
()