优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 计算题
初中数学

如图,二次函数 y = a x 2 + bx + 4 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,其对称轴与线段 BC 交于点 E ,垂直于 x 轴的动直线 l 分别交抛物线和线段 BC 于点 P 和点 F ,动直线 l 在抛物线的对称轴的右侧(不含对称轴)沿 x 轴正方向移动到 B 点.

(1)求出二次函数 y = a x 2 + bx + 4 BC 所在直线的表达式;

(2)在动直线 l 移动的过程中,试求使四边形 DEFP 为平行四边形的点 P 的坐标;

(3)连接 CP CD ,在动直线 l 移动的过程中,抛物线上是否存在点 P ,使得以点 P C F 为顶点的三角形与 ΔDCE 相似?如果存在,求出点 P 的坐标;如果不存在,请说明理由.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

直线 y = - 3 2 x + 3 x 轴于点 A ,交 y 轴于点 B ,顶点为 D 的抛物线 y = - 3 4 x 2 + 2 mx - 3 m 经过点 A ,交 x 轴于另一点 C ,连接 BD AD CD ,如图所示.

(1)直接写出抛物线的解析式和点 A C D 的坐标;

(2)动点 P BD 上以每秒2个单位长的速度由点 B 向点 D 运动,同时动点 Q CA 上以每秒3个单位长的速度由点 C 向点 A 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 t 秒. PQ 交线段 AD 于点 E

①当 DPE = CAD 时,求 t 的值;

②过点 E EM BD ,垂足为点 M ,过点 P PN BD 交线段 AB AD 于点 N ,当 PN = EM 时,求 t 的值.

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上, GE BC ,垂足为点 E GF CD ,垂足为点 F

(1)证明与推断:

①求证:四边形 CEGF 是正方形;

②推断: AG BE 的值为       

(2)探究与证明:

将正方形 CEGF 绕点 C 顺时针方向旋转 α ( 0 ° < α < 45 ° ) ,如图(2)所示,试探究线段 AG BE 之间的数量关系,并说明理由;

(3)拓展与运用:

正方形 CEGF 在旋转过程中,当 B E F 三点在一条直线上时,如图(3)所示,延长 CG AD 于点 H .若 AG = 6 GH = 2 2 ,则 BC =       

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,经过点 C 的切线交 AB 的延长线于点 E AD EC EC 的延长线于点 D AD O F FM AB H ,分别交 O AC M N ,连接 MB BC

(1)求证: AC 平分 DAE

(2)若 cos M = 4 5 BE = 1

①求 O 的半径;

②求 FN 的长.

来源:2018年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中:

①探究三条线段 AB CE CF 之间的数量关系,并说明理由;

②若 CE = 4 CF = 2 ,求 DN 的长.

来源:2017年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为        

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省仙桃市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° ,点 D 与点 B AC 同侧, DAC > BAC ,且 DA = DC ,过点 B BE / / DA DC 于点 E M AB 的中点,连接 MD ME

(1)如图1,当 ADC = 90 ° 时,线段 MD ME 的数量关系是         

(2)如图2,当 ADC = 60 ° 时,试探究线段 MD ME 的数量关系,并证明你的结论;

(3)如图3,当 ADC = α 时,求 ME MD 的值.

来源:2017年湖北省仙桃市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 的一组对边 AD BC 的延长线交于点 E

(1)如图1,若 ABC = ADC = 90 ° ,求证: ED EA = EC EB

(2)如图2,若 ABC = 120 ° cos ADC = 3 5 CD = 5 AB = 12 ΔCDE 的面积为6,求四边形 ABCD 的面积;

(3)如图3,另一组对边 AB DC 的延长线相交于点 F .若 cos ABC = cos ADC = 3 5 CD = 5 CF = ED = n ,直接写出 AD 的长(用含 n 的式子表示)

来源:2017年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为      

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

如图在平面直角坐标系中,直线 y = - 3 4 x + 3 x 轴、 y 轴分别交于 A B 两点,点 P Q 同时从点 A 出发,运动时间为 t 秒.其中点 P 沿射线 AB 运动,速度为每秒4个单位长度,点 Q 沿射线 AO 运动,速度为每秒5个单位长度.以点 Q 为圆心, PQ 长为半径作 Q

(1)求证:直线 AB Q 的切线;

(2)过点 A 左侧 x 轴上的任意一点 C ( m , 0 ) ,作直线 AB 的垂线 CM ,垂足为 M .若 CM Q 相切于点 D ,求 m t 的函数关系式(不需写出自变量的取值范围);

(3)在(2)的条件下,是否存在点 C ,直线 AB CM y 轴与 Q 同时相切?若存在,请直接写出此时点 C 的坐标;若不存在,请说明理由.

来源:2017年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图所示,在平面直角坐标系 xOy 中, C = 90 ° OB = 25 OC = 20 ,若点 M 是边 OC 上的一个动点(与点 O C 不重合),过点 M MN / / OB BC 于点 N

(1)求点 C 的坐标;

(2)当 ΔMCN 的周长与四边形 OMNB 的周长相等时,求 CM 的长;

(3)在 OB 上是否存在点 Q ,使得 ΔMNQ 为等腰直角三角形?若存在,请求出此时 MN 的长;若不存在,请说明理由.

来源:2017年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔABC 中, C = 90 ° BAC 的平分线 D BC 于点 D ,过点 D DE AD AB 于点 E ,以 AE 为直径作 O

(1)求证: BC O 的切线;

(2)若 AC = 3 BC = 4 ,求 BE 的长.

来源:2017年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图所示,在平面直角坐标系 xOy 中,四边形 OABC 是矩形, OA = 4 OC = 3 ,动点 P 从点 C 出发,沿射线 CB 方向以每秒2个单位长度的速度运动;同时,动点 Q 从点 O 出发,沿 x 轴正半轴方向以每秒1个单位长度的速度运动.设点 P 、点 Q 的运动时间为 t ( s )

(1)当 t = 1 s 时,求经过点 O P A 三点的抛物线的解析式;

(2)当 t = 2 s 时,求 tan QPA 的值;

(3)当线段 PQ 与线段 AB 相交于点 M ,且 BM = 2 AM 时,求 t ( s ) 的值;

(4)连接 CQ ,当点 P Q 在运动过程中,记 ΔCQP 与矩形 OABC 重叠部分的面积为 S ,求 S t 的函数关系式.

来源:2017年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 BF O 的直径, A O 上(异于 B F ) 一点, O 的切线 MA FB 的延长线交于点 M P AM 上一点, PB 的延长线交 O 于点 C D BC 上一点且 PA = PD AD 的延长线交 O 于点 E

(1)求证: BE ̂ = CE ̂

(2)若 ED EA 的长是一元二次方程 x 2 - 5 x + 5 = 0 的两根,求 BE 的长;

(3)若 MA = 6 2 sin AMF = 1 3 ,求 AB 的长.

来源:2017年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质计算题