优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 计算题
初中数学

如图,已知 BF O 的直径, A O 上(异于 B F ) 一点, O 的切线 MA FB 的延长线交于点 M P AM 上一点, PB 的延长线交 O 于点 C D BC 上一点且 PA = PD AD 的延长线交 O 于点 E

(1)求证: BE ̂ = CE ̂

(2)若 ED EA 的长是一元二次方程 x 2 - 5 x + 5 = 0 的两根,求 BE 的长;

(3)若 MA = 6 2 sin AMF = 1 3 ,求 AB 的长.

来源:2017年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

直线 y = kx + b 与反比例函数 y = 6 x ( x > 0 ) 的图象分别交于点 A ( m , 3 ) 和点 B ( 6 , n ) ,与坐标轴分别交于点 C 和点 D

(1)求直线 AB 的解析式;

(2)若点 P x 轴上一动点,当 ΔCOD ΔADP 相似时,求点 P 的坐标.

来源:2017年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AB = 3 AD = 4 ,动点 Q 从点 A 出发,以每秒1个单位的速度,沿 AB 向点 B 移动;同时点 P 从点 B 出发,仍以每秒1个单位的速度,沿 BC 向点 C 移动,连接 QP QD PD .若两个点同时运动的时间为 x ( 0 < x 3 ) ,解答下列问题:

(1)设 ΔQPD 的面积为 S ,用含 x 的函数关系式表示 S ;当 x 为何值时, S 有最大值?并求出最小值;

(2)是否存在 x 的值,使得 QP DP ?试说明理由.

来源:2016年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长为4,点 P AB 边上的一个动点,连接 CP ,过点 P PC 的垂线交 AD 于点 E ,以 PE 为边作正方形 PEFG ,顶点 G 在线段 PC 上,对角线 EG PF 相交于点 O

(1)若 AP = 1 ,则 AE =        

(2)①求证:点 O 一定在 ΔAPE 的外接圆上;

②当点 P 从点 A 运动到点 B 时,点 O 也随之运动,求点 O 经过的路径长;

(3)在点 P 从点 A 到点 B 的运动过程中, ΔAPE 的外接圆的圆心也随之运动,求该圆心到 AB 边的距离的最大值.

来源:2017年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = 4 9 x 2 - 4 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C C 的半径为 5 P C 上一动点.

(1)点 B C 的坐标分别为 B (        ) C (       )

(2)是否存在点 P ,使得 ΔPBC 为直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)连接 PB ,若 E PB 的中点,连接 OE ,则 OE 的最大值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知矩形 ABCD 中, AB = 4 AD = m ,动点 P 从点 D 出发,在边 DA 上以每秒1个单位的速度向点 A 运动,连接 CP ,作点 D 关于直线 PC 的对称点 E ,设点 P 的运动时间为 t ( s )

(1)若 m = 6 ,求当 P E B 三点在同一直线上时对应的 t 的值.

(2)已知 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻 t ,使点 E 到直线 BC 的距离等于3,求所有这样的 m 的取值范围.

来源:2017年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC = 4 ACB = 90 ° ,正方形 BDEF 的边长为2,将正方形 BDEF 绕点 B 旋转一周,连接 AE BE CD

(1)请找出图中与 ΔABE 相似的三角形,并说明理由;

(2)求当 A E F 三点在一直线上时 CD 的长;

(3)设 AE 的中点为 M ,连接 FM ,试求 FM 长的取值范围.

来源:2019年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为      

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

直线 y = - 3 2 x + 3 x 轴于点 A ,交 y 轴于点 B ,顶点为 D 的抛物线 y = - 3 4 x 2 + 2 mx - 3 m 经过点 A ,交 x 轴于另一点 C ,连接 BD AD CD ,如图所示.

(1)直接写出抛物线的解析式和点 A C D 的坐标;

(2)动点 P BD 上以每秒2个单位长的速度由点 B 向点 D 运动,同时动点 Q CA 上以每秒3个单位长的速度由点 C 向点 A 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为 t 秒. PQ 交线段 AD 于点 E

①当 DPE = CAD 时,求 t 的值;

②过点 E EM BD ,垂足为点 M ,过点 P PN BD 交线段 AB AD 于点 N ,当 PN = EM 时,求 t 的值.

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图在平面直角坐标系中,直线 y = - 3 4 x + 3 x 轴、 y 轴分别交于 A B 两点,点 P Q 同时从点 A 出发,运动时间为 t 秒.其中点 P 沿射线 AB 运动,速度为每秒4个单位长度,点 Q 沿射线 AO 运动,速度为每秒5个单位长度.以点 Q 为圆心, PQ 长为半径作 Q

(1)求证:直线 AB Q 的切线;

(2)过点 A 左侧 x 轴上的任意一点 C ( m , 0 ) ,作直线 AB 的垂线 CM ,垂足为 M .若 CM Q 相切于点 D ,求 m t 的函数关系式(不需写出自变量的取值范围);

(3)在(2)的条件下,是否存在点 C ,直线 AB CM y 轴与 Q 同时相切?若存在,请直接写出此时点 C 的坐标;若不存在,请说明理由.

来源:2017年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质计算题