优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图所示,四边形 ABCD 为正方形,在 ΔECH 中, ECH = 90 ° CE = CH HE 的延长线与 CD 的延长线交于点 F ,点 D B H 在同一条直线上.

(1)求证: ΔCDE ΔCBH

(2)当 HB HD = 1 5 时,求 FD FC 的值;

(3)当 HB = 3 HG = 4 时,求 sin CFE 的值.

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的边 OA x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B BE x 轴,垂足为 E tan BAE = 4 3 ,动点 M 以每秒1个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF ΔAOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) 秒.

(1)求点 B 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量 t 的取值范围;

(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M A O P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

在一平面内,线段 AB = 20 ,线段 BC = CD = DA = 10 ,将这四条线段顺次首尾相接.把 AB 固定,让 AD 绕点 A AB 开始逆时针旋转角 α ( α > 0 ° ) 到某一位置时, BC CD 将会跟随出现到相应的位置.

论证:如图1,当 AD / / BC 时,设 AB CD 交于点 O ,求证: AO = 10

发现:当旋转角 α = 60 ° 时, ADC 的度数可能是多少?

尝试:取线段 CD 的中点 M ,当点 M 与点 B 距离最大时,求点 M AB 的距离;

拓展:①如图2,设点 D B 的距离为 d ,若 BCD 的平分线所在直线交 AB 于点 P ,直接写出 BP 的长(用含 d 的式子表示);

②当点 C AB 下方,且 AD CD 垂直时,直接写出 α 的余弦值.

来源:2021年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° BC = 6 3 cm AC = 12 cm .点 P CA 边上的一动点,点 P 从点 C 出发以每秒 2 cm 的速度沿 CA 方向匀速运动,以 CP 为边作等边 ΔCPQ (点 B 、点 Q AC 同侧),设点 P 运动的时间为 x 秒, ΔABC ΔCPQ 重叠部分的面积为 S

(1)当点 Q 落在 ΔABC 内部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示,不要求写 x 的取值范围);

(2)当点 Q 落在 AB 上时,求此时 ΔABC ΔCPQ 重叠部分的面积 S 的值;

(3)当点 Q 落在 ΔABC 外部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示).

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)阅读理解

我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.

根据“赵爽弦图”写出勾股定理和推理过程;

(2)问题解决

勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形 ACDE 的中心 O ,作 FG HP ,将它分成4份,所分成的四部分和以 BC 为边的正方形恰好能拼成以 AB 为边的正方形.若 AC = 12 BC = 5 ,求 EF 的值;

(3)拓展探究

如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形 N 的边长为定值 n ,小正方形 A B C D 的边长分别为 a b c d

已知 1 = 2 = 3 = α ,当角 α ( 0 ° < α < 90 ° ) 变化时,探究 b c 的关系式,并写出该关系式及解答过程 ( b c 的关系式用含 n 的式子表示).

来源:2021年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, O BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE CF

(1)如图1,当 BAC = 90 ° AB = AC 时,则 AE CF 满足的数量关系是   

(2)如图2,当 BAC = 90 ° AB AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.

(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 BC = 6 时,求 DE 的长.

来源:2021年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题