如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是( )
A.144cm | B.180cm | C.240cm | D.360cm |
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A.3秒或4.8秒
B.3秒
C.4.5秒
D.4.5秒或4.8秒
如图,在一斜边长 的直角三角形木板(即 中截取一个正方形 ,点 在边 上,点 在斜边 上,点 在边 上,若 ,则这块木板截取正方形 后,剩余部分的面积为
A. B. C. D.
学校门口的栏杆如图所示,栏杆从水平位置 绕 点旋转到 位置,已知 , ,垂足分别为 , , , , ,则栏杆 端应下降的垂直距离 为
A. B. C. D.
圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )
A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2
为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端 ,标记好脚掌中心位置为 ,测得脚掌中心位置 到镜面中心 的距离是 ,镜面中心 距离旗杆底部 的距离为 ,如图所示.已知小丽同学的身高是 ,眼睛位置 距离小丽头顶的距离是 ,则旗杆 的高度等于
A. B. C. D.
如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为( )
A.8.5米B.9米C.9.5米D.10米
志远要在报纸上刊登广告,一块10 cm×5 cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )
A. |
540元 |
B. |
1080元 |
C. |
1620元 |
D. |
1800元 |
“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为
A.1.25尺B.57.5尺C.6.25尺D.56.5尺
有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )
A.1:B.1:2C.2:3D.4:9
如图,树 在路灯 的照射下形成投影 ,已知路灯高 ,树影 ,树 与路灯 的水平距离 ,则树的高度 长是
A. |
|
B. |
|
C. |
|
D. |
|
一个三角形木架三边长分别是 , , ,现要再做一个与其相似的三角形木架,而只有长为 和 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有
A. |
一种 |
B. |
两种 |
C. |
三种 |
D. |
四种 |
试题篮
()