某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.
(1)问超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据:°≈,°≈,°≈)
(12')如图,一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内有暗礁,渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改为向正东方向航行,问渔船有触礁有危险吗?为什么?
(12')如图,在离水面高度5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳,问:8秒后,船向岸边移动了多少米?(结果保留根号)
(12')如图,某水库拦水坝的迎水坡AD的坡度i=3:7,坝顶宽8米,坝高6米, cosB=,求:
(1)背水坡BC的长。
(2)坝底宽AB。
(3)水坝截面的面积S。
如图,在△ABC中,∠A=30°,∠B=45°,AC=2,求△ABC的周长和面积。(12')
计算。(10')
(1)sin30°-cos45°+×-tan45°
(2)2sin30°·tan30°+cos60°·tan60°
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)
在东西方向的海岸线,上有一长为1km的码头MN(如图,MN=lkm),在码头西端M的正西19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西3000,且与A相距40km的B处;经过l小时20分钟,又测得该轮船位于A的北偏东6000方向,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.
(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米)
如图,某校九年级(1)班的一个学习小组进行测量小山高度的实践活动,部分同学在山脚点A测得山腰上一点D的仰角为300,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为450,山腰点D的俯角为600。请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)。
大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度
为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A处观测河对岸水边有一点C,测得C在北偏东60°的方向上,沿河岸向东前行30米到达B处,测得C在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度(结果保留根号)。
如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=.求线段AD的长.
如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得的仰角为,再往条幅方向前行20米到达点E处,看条幅顶端B,测得的仰角为,若小明的身高约1.7米,求宣传条幅BC的长(结果精确到1米)
试题篮
()