如图,在矩形 中, , , , 分别为 , 边的中点.动点 从点 出发沿 向点 运动,同时,动点 从点 出发沿 向点 运动,连接 ,过点 作 于点 ,连接 .若点 的速度是点 的速度的2倍,在点 从点 运动至点 的过程中,线段 长度的最大值为 ,线段 长度的最小值为 .
如图,抛物线的顶点为 ,与 轴交于点 .若平移该抛物线使其顶点 沿直线移动到点 ,点 的对应点为 ,则抛物线上 段扫过的区域(阴影部分)的面积为 .
矩形 中, , ,点 在对角线 上,且 ,过点 作 交 于点 ,交 于点 .在 上取一点 ,使 ,则 的长为 .
三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点 在 的延长线上,点 在 上, , , , , ,则 的长度是 .
如图,矩形 的边 与 轴交于点 ,与反比例函数 在第一象限的图象交于点 , ,点 的纵坐标为1, 的面积是 ,则 的值是 .
如图,直线 为 ,过点 作 轴,与直线 交于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ;再作 轴,交直线 于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ; ,按此作法进行下去,则点 的坐标为 .
如图,在 中, , , ,点 是 边上的动点(不与点 重合),过 作 ,垂足为 ,点 是 的中点,连接 ,设 , 的面积为 ,则 与 之间的函数关系式为 .
如图,若 内一点 满足 ,则称点 为 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知 中, , , 为 的布罗卡尔点,若 ,则 .
如图,矩形 的四个顶点分别在矩形 的各条边上, , , .有以下四个结论:① ;② ;③ ;④矩形 的面积是 .其中一定成立的是 .(把所有正确结论的序号填在横线上)
试题篮
()