优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形
初中数学

在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 60 ° 30 ° 15 ° 等大小的角,可以采用如下方法:

操作感知:

第一步:对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开(如图1 )

第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN (如图 2 )

猜想论证:

(1)若延长 MN BC 于点 P ,如图3所示,试判定 ΔBMP 的形状,并证明你的结论.

拓展探究:

(2)在图3中,若 AB = a BC = b ,当 a b 满足什么关系时,才能在矩形纸片 ABCD 中剪出符合(1)中结论的三角形纸片 BMP

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, ABC = 90 ° AB = 2 BC = 3 .点 D 为平面上一个动点, ADB = 45 ° ,则线段 CD 长度的最小值为   

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 30 ° ACB = 45 ° AB = 2 ,点 P 从点 A 出发沿 AB 方向运动,到达点 B 时停止运动,连结 CP ,点 A 关于直线 CP 的对称点为 A ' ,连结 A ' C A ' P .在运动过程中,点 A ' 到直线 AB 距离的最大值是   ;点 P 到达点 B 时,线段 A ' P 扫过的面积为   

来源:2021年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC OA 边在 x 轴的正半轴上, OC 边在 y 轴的正半轴上,点 B 的坐标为 ( 4 , 2 ) ,反比例函数 y = 2 x ( x > 0 ) 的图象与 BC 交于点 D ,与对角线 OB 交于点 E ,与 AB 交于点 F ,连接 OD DE EF DF .下列结论:

sin DOC = cos BOC ;② OE = BE ;③ S ΔDOE = S ΔBEF ;④ OD : DF = 2 : 3

其中正确的结论有 (    )

A.

4个

B.

3个

C.

2个

D.

1个

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, BAD = 120 ° DE BC BC 的延长线于点 E .连结 AE BD 于点 F ,交 CD 于点 G FH CD 于点 H ,连结 CF .有下列结论:① AF = CF ;② A F 2 = EF FG ;③ FG : EG = 4 : 5 ;④ cos GFH = 3 21 14 .其中所有正确结论的序号为   

来源:2021年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC OA 边在 x 轴的正半轴上, OC 边在 y 轴的正半轴上,点 B 的坐标为 ( 4 , 2 ) ,反比例函数 y = 2 x ( x > 0 ) 的图象与 BC 交于点 D ,与对角线 OB 交于点 E ,与 AB 交于点 F ,连接 OD DE EF DF .下列结论:

sin DOC = cos BOC ;② OE = BE ;③ S ΔDOE = S ΔBEF ;④ OD : DF = 2 : 3

其中正确的结论有 (    )

A.4个B.3个C.2个D.1个

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 Rt Δ ABC 中, ACB = 90 ° AC > BC ACB 的平分线交 AB 于点 D .过点 D 分别作 DE AC DF BC .垂足分别为 E F ,则图1中与线段 CE 相等的线段是        

问题探究

(2)如图2, AB 是半圆 O 的直径, AB = 8 P AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP BP APB 的平分线交 AB 于点 C ,过点 C 分别作 CE AP CF BP ,垂足分别为 E F ,求线段 CF 的长.

问题解决

(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 O 的直径 AB = 70 m ,点 C O 上,且 CA = CB P AB 上一点,连接 CP 并延长,交 O 于点 D .连接 AD BD .过点 P 分别作 PE AD PF BD ,垂足分别为 E F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 )

①求 y x 之间的函数关系式;

②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 5 ,点 E F 分别是边 AB BC 上的动点,点 E 不与 A B 重合,且 EF = AB G 是五边形 AEFCD 内满足 GE = GF EGF = 90 ° 的点.现给出以下结论:

GEB GFB 一定互补;

②点 G 到边 AB BC 的距离一定相等;

③点 G 到边 AD DC 的距离可能相等;

④点 G 到边 AB 的距离的最大值为 2 2

其中正确的是        .(写出所有正确结论的序号)

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB / / CD AB CD ABC = 90 ° ,点 E F 分别在线段 BC AD 上,且 EF / / CD AB = AF CD = DF

(1)求证: CF FB

(2)求证:以 AD 为直径的圆与 BC 相切;

(3)若 EF = 2 DFE = 120 ° ,求 ΔADE 的面积.

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图.在边长为6的正方形 ABCD 中,点 E F 分别在 BC CD 上, BC = 3 BE BE = CF AE BF ,垂足为 G O 是对角线 BD 的中点,连接 OG 、则 OG 的长为   

来源:2021年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

ABCD 中, BAD = α DE 平分 ADC ,交对角线 AC 于点 G ,交射线 AB 于点 E ,将线段 EB 绕点 E 顺时针旋转 1 2 α 得线段 EP

(1)如图1,当 α = 120 ° 时,连接 AP ,请直接写出线段 AP 和线段 AC 的数量关系;

(2)如图2,当 α = 90 ° 时,过点 B BF EP 于点,连接 AF ,请写出线段 AF AB AD 之间的数量关系,并说明理由;

(3)当 α = 120 ° 时,连接 AP ,若 BE = 1 2 AB ,请直接写出 ΔAPE ΔCDG 面积的比值.

来源:2021年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题