优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 利用频率估计概率 / 解答题
初中数学

甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.

  • 题型:未知
  • 难度:未知

在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:

(1)求样本数据中为A级的频率;
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.

  • 题型:未知
  • 难度:未知

一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.

  • 题型:未知
  • 难度:未知

如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.

(1)求事件“一次操作,得到的数恰好是0”发生的概率;
(2)用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数绝对值相等”发生的概率.

  • 题型:未知
  • 难度:未知

小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:

朝上的点数
1
2
3
4
5
6
出现的次数
7
9
6
8
20
10

(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?
(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.

  • 题型:未知
  • 难度:未知

有四张正面分别标有数字-2,-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们正面朝下,洗匀后从中抽出一张记下数字,放回洗匀后再从中抽出一张记下数字.
(1)请用列表或画树状图的方法表示两次抽出卡片上的数字的所有结果;
(2)若将第一次抽出的数字作为点的横坐标a,第二次抽出的数字作为点的纵坐标b,求点(a,b)落在双曲线上的概率.

  • 题型:未知
  • 难度:未知

当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A.基本不用;B,平均一天使用1—2小时;C.平均一天使用2—4小时;D.平均一天使用4—6小时:E.平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图,请根据相关信息,
   
解答下列问题
(1)将上面的条形统计图补充完整;
(2)若一天中手机使用时间趣过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”:
(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率.

  • 题型:未知
  • 难度:未知

小莉的爸爸买了今某演唱会的一张门票,她和哥哥两人都很想去观看,可门票只
有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字
为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,
然后将抽出的两张牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用树状图或列表的方法表示出两张牌数字相加和的所有可能出现的结果;
(2)哥哥设计的游戏规则公平吗?为什么?若不公平,请设计一种公平的游戏规则.

  • 题型:未知
  • 难度:未知

一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“鄂”、“州”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“鄂”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率P1
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“鄂州”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明).

  • 题型:未知
  • 难度:未知

如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).

⑴若小静转动转盘一次,求得到负数的概率;
⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.

  • 题型:未知
  • 难度:未知

小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球. 若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.

  • 题型:未知
  • 难度:未知

如图经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.

(1)试用树状图或列表法中的一种列举出这两辆汽行驶方向所有可能的结果;
(2)求至少有一辆汽车向左转的概率.

  • 题型:未知
  • 难度:未知

有四张背面相同的纸牌,其正面分别画有四个不同的几何图形(如图).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用表示);
(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.

  • 题型:未知
  • 难度:未知

将分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上.
(1)随机抽取一张,求抽到偶数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,恰好这个两位数能被3整除的概率是多少?

  • 题型:未知
  • 难度:未知

小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云岗石窟和五台山。他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游。请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用(H,P,Y,W表示)。

  • 题型:未知
  • 难度:未知

初中数学利用频率估计概率解答题