如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
(1)如图1,猜想∠QEP= °;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
(本题6分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请用尺规作图确定P点的位置(保留作图痕迹,不必说明理由).
如图,有分别过A、B两个加油站的公路、相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路、的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线成轴对称的△A;
(2) 线段被直线 ;
(3) 在直线上找一点P,使PB+PC的长最短,并算出这个最短长度.
(本题6分) 如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.
(本小题9分)如图,P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBP′的位置.
(1)旋转中心是点 ______,点P旋转的度数是______;
(2)连接PP′,△BPP′的形状是 ______三角形;
(3)若PA=2,PB=4,∠APB=135°.
①求△BPP′的周长; ②求PC的长.
实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.
(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.
(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.
已知:如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在的平分线上,并说明理由.
如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.
试题篮
()