优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二元一次不定方程的应用
初中数学

二元一次方程组 的解为(    )

A. B. C. D.
  • 题型:未知
  • 难度:未知

某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x个工人加工桌子,y个工人加工椅子,则列出正确的二元一次方程组为(    )

A.
B.
C.
D.
  • 题型:未知
  • 难度:未知

若2x3yn+1与-5xm-2y2是同类项,则m=     , n=        

  • 题型:未知
  • 难度:未知

已知关于的方程组的解满足不等式组,求满足条件的的整数值.

  • 题型:未知
  • 难度:未知

某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:

类型
价格
A型
B型
进价(元/件)
60
100
标价(元/件)
100
160

 
(1)求这两种服装各购进的件数;
(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?

  • 题型:未知
  • 难度:未知

已知是方程组的解,则的值是(  )

A.-1 B.2 C.3 D.4
  • 题型:未知
  • 难度:未知

阅读下列材料:
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
已知关于x、y的方程组的解都为非负数.
(1)求a的取值范围;
(2)已知2a﹣b=1,且,求a+b的取值范围;
(3)已知a﹣b=m(m是大于1的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)

  • 题型:未知
  • 难度:未知

(乐山)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:

(1)小张如何进货,使进货款恰好为1300元?
(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.

  • 题型:未知
  • 难度:未知

某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:

类型
价格
A型
B型
进价(元/件)
60
100
标价(元/件)
100
160

(1)求这两种服装各购进的件数;
(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?

  • 题型:未知
  • 难度:未知

解方程组:

  • 题型:未知
  • 难度:未知

已知是方程组的解,则的值是( )

A.-1 B.2 C.3 D.4
  • 题型:未知
  • 难度:未知

四川地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.
(1)求大、小货车原计划每辆每次各运送帐篷多少顶?
(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300m顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.

  • 题型:未知
  • 难度:未知

“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2) 预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

  • 题型:未知
  • 难度:未知

甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?

  • 题型:未知
  • 难度:未知

初中数学二元一次不定方程的应用试题