某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.
(1)如果小红家每月用水15吨,水费是 元,如果每月用水23吨,水费是 元
(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费如何用x代数式表示.
(3)如果小明家第二季度交纳水费的情况如下:
月份 |
四月份 |
五月份 |
六月份 |
交费金额 |
30元 |
34元 |
47.8元 |
小明家这个季度共用水多少立方米?
小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.
(1)求返回时A、B两地间的路程;
(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?
(本题12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:
例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水5立方米,则应收水费多少元?
(2)若某户居民3月份交水费36元,则用水量为多少立方米?
(3)若某户居民4月份用水立方米(其中6<<10),请用含的代数式表示应收水费.
(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水立方米,请用含的代数式表示该户居民5、6两个月共交水费多少元?
(本题10分)同学们都知道:表示与之差的绝对值,实际上也可理解为与两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:
(1) 数轴上表示与两点之间的距离是________,
(2) 数轴上表示与的两点之间的距离可以表示为__ ________.
(3) 如果,则= .
(4) 同理表示数轴上有理数x所对应的点到-3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得=4,这样的整数是 .
(5) 由以上探索猜想对于任何有理数,是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其他因素,设安排x名工人制衣,那么:
(1)一天中制衣所获得的利润为P=___________________(试用含x的代数式表示并化简);
(2)一天中剩余布出售所获利润为Q=________________(试用含x的代数式表示并化简);
(3)当安排166名工人制衣时,所获总利润是多少元?能否安排167名工人制衣以提高利润? 试说明理由.(本题6分)
A,B分别为数轴上的两点,点A对应的数为﹣20,点B对应的数为100.
(1)请写出与A,B两点距离相等的点M所对应的数;
(2)现有一只电子蚂蚁P从B出发,以6单位/秒速度向左移动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒速度向右运动,设两只电子蚂蚁在C相遇,你知道点C对应的数是多少吗?
如图的数阵是由一些奇数组成的.
(1)如图框中的四个数中,若设第一行的第一个数为x,用含x的代数式表示另外三个数;
(2)若这样框中的四个数的和是200,求出这四个数;
(3)是否存在这样的四个数,他们的和为2014?若存在,请求出中四个数中最大的数;若不存在,请说明理由.
解下列方程:(本题满分8分,每小题4分)
(1)4-2(3-x)=x
(2)
试题篮
()