优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.

(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于     
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求△ABD的面积;
(3)如图3,若F1:y=x2x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.

  • 题型:未知
  • 难度:未知

已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式.
(2)如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使|MA﹣MH|的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3)如图2,过x轴上点E(﹣2,0)作ED⊥AB交抛物线于点D,在y轴上找一点F,使△EDF的周长最小,求出此时点F的坐标;
(4)如图3,已知点N(0,﹣1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.

(1)直接写出 D,E 两点的坐标,D(         ),E(          
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.

(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动.过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?
(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.  

(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,一抛物线经过点A(−2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.

(1)求该抛物线的函数关系式及顶点D坐标.
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标.
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧).已知点坐标为().

(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

  • 题型:未知
  • 难度:未知

如图1:矩形OABC的顶点A、B在抛物线上,OC在轴上,且
(1)求抛物线的解析式及抛物线的对称轴.
(2)如图2,边长为的正方形ABCD的边CD在轴上,A、B两点在抛物线上,请用含的代数式表示点B的坐标,并求出正方形边长的值.

  • 题型:未知
  • 难度:未知

“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现:销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要             元.
(每天的总成本=每件的成本×每天的销售量)

  • 题型:未知
  • 难度:未知

如图,已知抛物线的方程C1:(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.

(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为,点P的横坐标为,求关于的函数关系式,并求出的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在轴上时,求出对应点P的坐标.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题