优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

已知二次函数y=x2+bx+c的图象过(2,-1)和(4,3)两点,求y=x2+bx+c的表达式

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.  

(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,四边形的内接矩形,如果的高线,底边,设

(1)求关于的函数关系式;
(2)当为何值时, 四边形的面积最大?最大面积是多少?

  • 题型:未知
  • 难度:未知

“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.
(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?
(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?

  • 题型:未知
  • 难度:未知

如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.

(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

  • 题型:未知
  • 难度:未知

已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,-3).
(1) 求抛物线的解析式.
(2) 如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3) 如图2,过x轴上点E(-2,0)作交抛物线于点D,在y轴上找一点F,使的周长最小,求出此时点F的坐标;  
(4) 如图3,已知点N(0,-1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标,若不存在,请说明理由;

  • 题型:未知
  • 难度:未知

已知二次函数的图象如图所示,它 与x轴的一个交点坐标为
A(-1,0),另一交点为B,与y轴的交点坐标为C(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;
(2)求出顶点D的坐标以及面积;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围.

  • 题型:未知
  • 难度:未知

为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量(千克)与销售价(元/千克)有如下关系:.设这种产品每天的销售利润为(元).
(1)求之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?

  • 题型:未知
  • 难度:未知

如图,所示,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.

(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B,C重合),过M做MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB,NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,一抛物线经过点A(−2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.

(1)求该抛物线的函数关系式及顶点D坐标.
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标.
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.

  • 题型:未知
  • 难度:未知

某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1x+30(1≤x≤20),后10天的销售价格Q2则稳定在45元/件.
(1)试分别写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)与销售时间x(天)之间的函数关系式;
(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值.
(注:销售利润=销售收入-购进成本)

  • 题型:未知
  • 难度:未知

在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.

(1)求足球开始飞出到第一次落地时,该抛物线的函数表达式.
(2)足球第一次落地点距守门员多少米?(取
(3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取

  • 题型:未知
  • 难度:未知

已知二次函数是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?

  • 题型:未知
  • 难度:未知

已知抛物线
(1)该抛物线的对称轴是          ,顶点坐标         
(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;

x

 
 
 
 
 

y

 
 
 
 
 

 
 
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧).已知点坐标为().

(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题