(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.
(1)求线段OD的长;
(2)若,求弦MN的长.
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB=,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为_________,能构成等腰梯形的四个点为__________或__________或___________
如图6,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于
点E,弦AD∥OC.
(1)求证: ;
(2)求证:CD是⊙O的切线.
|
|||
如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数
y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、
B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.
(1)求证:D是 弧AE 的中点;
(2)求证:∠DAO =∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.
在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,
BC=AF,延长DF与BA的延长线交于E.
⑴求证△ABD为等腰三角形.
⑵求证AC•AF=DF•FE
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.
(本小题满分5分)已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.
(1)判断直线与的位置关系,并证明你的结论;
(2)若,=,求的值.
试题篮
()