回答下列问题:
⑴如图所示的甲、乙两个平面图形能折什么几何体?
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,你的搭法唯一吗?
(1)最多需要多少个小立方块?画出从左面看该几何体得到的图形;
(2)最少需要多少个小立方块?画出从左面看该几何体得到的图形。
如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为
A.3米 | B.4米 | C.5米 | D.6米 |
若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是
A.2 | B.3 | C.4 | D.5 |
如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为( )
A.320cm | B.395.24 cm | C.431.76 cm | D.480 cm |
如图,扇形彩色纸的半径为45cm,圆心角为,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 cm.(结果精确到0.1cm.参考数据:,,,)
如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?
(2)试比较立体图中与平面展开图中的大小关系?
试题篮
()