优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

二次函数的图象经过点(﹣1,4),且与直线相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).

(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;

  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.

(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1㎝,求BD的长.

  • 题型:未知
  • 难度:未知

某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.

  • 题型:未知
  • 难度:未知

如果二次函数的二次项系数为l,则此二次函数可表示为,我们称[p,q]为此函数的特征数,如函数的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.

  • 题型:未知
  • 难度:未知

请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将视为一个整体,然后设,则原方程可化为 ①
解得,当y=1时,,∴
当y=4时,,∴,∴原方程的解为= =-==-
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.

(1)在图中标出旋转中心P的位置,并写出它的坐标;
(2)在图上画出再次旋转后的三角形④.

  • 题型:未知
  • 难度:未知

如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是____________.

  • 题型:未知
  • 难度:未知

如图,抛物线经过点(1,﹣4)和(﹣2,5),请解答下列问题:

(1)求抛物线的解析式;
(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.
注:抛物线的对称轴是

  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;
(2)若CD=,求⊙O的半径.

  • 题型:未知
  • 难度:未知

如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

  • 题型:未知
  • 难度:未知

四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心       点,按顺时针方向旋转        度得到;
(3)若BC=8,则四边形AECF的面积为        .(直接写结果)

  • 题型:未知
  • 难度:未知

如图,抛物线的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点A,B,C的坐标;
(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.

  • 题型:未知
  • 难度:未知

已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O 相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O 相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

  • 题型:未知
  • 难度:未知

某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:,物价部门规定这种笔记本每本的销售单价不得高于18元.
(1)当每月销售量为70本时,获得的利润为多少元;
(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x之间的函数关系式,并写出自变量的取值范围;
(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?

  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;
(2)若CD=,求⊙O的半径.

  • 题型:未知
  • 难度:未知

初中数学解答题