优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 轴对称-最短路线问题
初中数学

如图,在直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,顶点 A C 分别在 x 轴, y 轴上, B D 两点坐标分别为 B ( 4 , 6 ) D ( 0 , 4 ) ,线段 EF 在边 OA 上移动,保持 EF = 3 ,当四边形 BDEF 的周长最小时,点 E 的坐标为   

来源:2021年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,直线 y = 1 2 x + 2 B C 两点,连接 AC

(1)求抛物线的解析式;

(2)求证: ΔAOC ΔACB

(3)点 M ( 3 , 2 ) 是抛物线上的一点,点 D 为抛物线上位于直线 BC 上方的一点,过点 D DE x 轴交直线 BC 于点 E ,点 P 为抛物线对称轴上一动点,当线段 DE 的长度最大时,求 PD + PM 的最小值.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为8,点 M DC 上且 DM = 2 N AC 上的一动点,则 DN + MN 的最小值是   

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知菱形 ABCD 的面积为 2 3 ,点 E 是一边 BC 上的中点,点 P 是对角线 BD 上的动点.连接 AE ,若 AE 平分 BAC ,则线段 PE PC 的和的最小值为   ,最大值为   

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, MON = 40 ° ,以 O 为圆心,4为半径作弧交 OM 于点 A ,交 ON 于点 B ,分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧在 MON 的内部相交于点 C ,画射线 OC AB ̂ 于点 D E OA 上一动点,连接 BE DE ,则阴影部分周长的最小值为   

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,线段 MN 在对角线 BD 上运动,若 O 的面积为 2 π MN = 1 ,则 ΔAMN 周长的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, A B 两点的坐标分别为 A ( 4 , 3 ) B ( 0 , - 3 ) ,在 x 轴上找一点 P ,使线段 PA + PB 的值最小,则点 P 的坐标是   

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ACB 中, C = 90 ° ABC = 75 ° AB = 5 ,点 E 为边 AC 上的动点,点 F 为边 AB 上的动点,则线段 FE + EB 的最小值是 (    )

A.

5 3 2

B.

5 2

C.

5

D.

3

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° OA = 4 OB = 6 ,以点 O 为圆心,3为半径的 O ,与 OB 交于点 C ,过点 C CD OB AB 于点 D ,点 P 是边 OA 上的动点,则 PC + PD 的最小值为   

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° OA = 3 OB = 4 ,以点 O 为圆心,2为半径的圆与 OB 交于点 C ,过点 C CD OB AB 于点 D ,点 P 是边 OA 上的动点.当 PC + PD 最小时, OP 的长为 (    )

A. 1 2 B. 3 4 C.1D. 3 2

来源:2020年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

来源:2020年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,点 A ( 1 , 1 ) B ( 3 , 3 ) 是第一象限角平分线上的两点,点 C 的纵坐标为1,且 CA = CB ,在 y 轴上取一点 D ,连接 AC BC AD BD ,使得四边形 ACBD 的周长最小,这个最小周长的值为     

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学轴对称-最短路线问题试题