赚现金
已知函数 f ( x ) = x , g ( x ) = a ln x , a ∈ R
(Ⅰ)若曲线 y = f ( x ) 与曲线 y = g ( x ) 相交,且在交点处有共同的切线,求 a 的值和该切线方程;
(Ⅱ)设函数 h ( x ) = f ( x ) - g ( x ) ,当 h ( x ) 存在最小值时,求其最小值 φ ( a ) 的解析式;
(Ⅲ)对(Ⅱ)中的 φ ( a ) 和任意的 a > 0 , b > 0 ,证明: φ ` = ( a + b ) 2 ≤ φ ` ( a ) + φ ` ( b ) 2 ≤ φ ` ( 2 a b a + b ) .
试题篮