已知是数列的前项和,(,),且.
(1)求的值,并写出和的关系式;
(2)求数列的通项公式及的表达式;
(3)我们可以证明:若数列有上界(即存在常数,使得对一切 恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.
推荐试卷
已知是数列的前项和,(,),且.
(1)求的值,并写出和的关系式;
(2)求数列的通项公式及的表达式;
(3)我们可以证明:若数列有上界(即存在常数,使得对一切 恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.
试题篮
()