优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较易
  • 人气:145

设函数 f ( x ) = a x n ( 1 - x ) + b ( x > 0 ) n 为正整数, a , b 为常数,曲线 y = f ( x ) ( 1 , f ( 1 ) ) 处的切线方程为 x + y = 1 .
(1)求 a , b 的值;

(2)求函数 f ( x ) 的最大值;

(3)证明: f ( x ) < 1 n e .

登录免费查看答案和解析

设函数f(x)axn(1x)b(x<0),n为正整数,a,b