优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:填空题
  • 难度:中等
  • 人气:2067

古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数 1 , 3 , 6 , 10 . . . ,第 n 个三角形数为 n ( n + 1 ) 2 = 1 2 n 2 + 1 2 n .记第 n k 边形数为 N ( n , k ) ( k 3 ) ,以下列出了部分 k 边形数中第 n 个数的表达式:
三角形数 N ( n , 3 ) = 1 2 n 2 + 1 2 n
正方形数 N ( n , 4 ) = n 2
五边形数 N ( n , 5 ) = 3 2 n 2 - 1 2 n
六边形数 N ( n , 6 ) = 2 n 2 - n

可以推测 N ( n , k ) 的表达式,由此计算 N ( 10 , 24 ) =

登录免费查看答案和解析

古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1