优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:703

已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点();
(3)当点M的纵坐标为1时,求△ABM的面积.

登录免费查看答案和解析

已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,,离心