优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较难
  • 人气:2173

请仔细阅读以下材料:
已知是定义在上的单调递增函数.
求证:命题“设,若,则”是真命题.
证明:因为,由
又因为是定义在上的单调递增函数,
于是有.     ①
同理有.     ②
由①+ ②得
故,命题“设,若,则”是真命题.
请针对以上阅读材料中的,解答以下问题:
(1)试用命题的等价性证明:“设,若,则:”是真命题;
(2)解关于的不等式(其中).

登录免费查看答案和解析

请仔细阅读以下材料:已知是定义在上的单调递增函数.求证:命题