已知椭圆的离心率为,椭圆的左、右两个顶点分别为,,直线与椭圆相交于两点,经过三点的圆与经过三点的圆分别记为圆C1与圆C2.
(1)求椭圆的方程;
(2)求证:无论如何变化,圆C1与圆C2的圆心距是定值;
(3)当变化时,求圆C1与圆C2的面积的和的最小值.
推荐试卷
已知椭圆的离心率为,椭圆的左、右两个顶点分别为,,直线与椭圆相交于两点,经过三点的圆与经过三点的圆分别记为圆C1与圆C2.
(1)求椭圆的方程;
(2)求证:无论如何变化,圆C1与圆C2的圆心距是定值;
(3)当变化时,求圆C1与圆C2的面积的和的最小值.
试题篮
()