设函数
(
为实常数).
(Ⅰ)当
时,证明:函数
不是奇函数;
(Ⅱ)设函数
是实数集
上的奇函数,求
与
的值;
(Ⅲ)当
为奇函数时,设其定义域为
,是否存在同时满足下列两个条件的区间
:(1)
,(2)对任何
,都有
成立? 若存在,求出这样的区间
;若不存在,请说明理由.
推荐试卷
设函数
(
为实常数).
(Ⅰ)当
时,证明:函数
不是奇函数;
(Ⅱ)设函数
是实数集
上的奇函数,求
与
的值;
(Ⅲ)当
为奇函数时,设其定义域为
,是否存在同时满足下列两个条件的区间
:(1)
,(2)对任何
,都有
成立? 若存在,求出这样的区间
;若不存在,请说明理由.
试题篮
()