优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较难
  • 人气:65

如图1,抛物线 y = 1 3 x 2 + bx + c 经过 A ( 2 3 0 ) B ( 0 , 2 ) 两点,点 C y 轴上, ΔABC 为等边三角形,点 D 从点 A 出发,沿 AB 方向以每秒2个单位长度的速度向终点 B 运动,设运动时间为 t ( t > 0 ) ,过点 D DE AC 于点 E ,以 DE 为边作矩形 DEGF ,使点 F x 轴上,点 G AC AC 的延长线上.

(1)求抛物线的解析式;

(2)将矩形 DEGF 沿 GF 所在直线翻折,得矩形 D ' E ' GF ,当点 D 的对称点 D ' 落在抛物线上时,求此时点 D ' 的坐标;

(3)如图2,在 x 轴上有一点 M ( 2 3 0 ) ,连接 BM CM ,在点 D 的运动过程中,设矩形 DEGF 与四边形 ABMC 重叠部分的面积为 S ,直接写出 S t 之间的函数关系式,并写出自变量 t 的取值范围.

登录免费查看答案和解析

如图1,抛物线y13x2bxc经过A(−23,0)、B(0,