优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较难
  • 人气:104

在平面直角坐标系中,我们定义直线 y = ax - a 为抛物线 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 y 轴上的三角形为其“梦想三角形”.

已知抛物线 y = - 2 3 3 x 2 - 4 3 3 x + 2 3 与其“梦想直线”交于 A B 两点(点 A 在点 B 的左侧),与 x 轴负半轴交于点 C

(1)填空:该抛物线的“梦想直线”的解析式为           ,点 A 的坐标为     ,点 B 的坐标为     

(2)如图,点 M 为线段 CB 上一动点,将 ΔACM AM 所在直线为对称轴翻折,点 C 的对称点为 N ,若 ΔAMN 为该抛物线的“梦想三角形”,求点 N 的坐标;

(3)当点 E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 F ,使得以点 A C E F 为顶点的四边形为平行四边形?若存在,请直接写出点 E F 的坐标;若不存在,请说明理由.

登录免费查看答案和解析

在平面直角坐标系中,我们定义直线yaxa为抛物线yax2bx