在平面直角坐标系中,我们定义直线 为抛物线 、 、 为常数, 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 轴上的三角形为其“梦想三角形”.
已知抛物线 与其“梦想直线”交于 、 两点(点 在点 的左侧),与 轴负半轴交于点 .
(1)填空:该抛物线的“梦想直线”的解析式为 ,点 的坐标为 ,点 的坐标为 ;
(2)如图,点 为线段 上一动点,将 以 所在直线为对称轴翻折,点 的对称点为 ,若 为该抛物线的“梦想三角形”,求点 的坐标;
(3)当点 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 ,使得以点 、 、 、 为顶点的四边形为平行四边形?若存在,请直接写出点 、 的坐标;若不存在,请说明理由.
推荐试卷