优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:困难
  • 人气:161

在平面直角坐标系中,抛物线 y 1 = - ( x + 4 ) ( x - n ) x 轴交于点 A 和点 B ( n 0 ) ( n - 4 ) ,顶点坐标记为 ( h 1 k 1 ) .抛物线 y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的顶点坐标记为 ( h 2 k 2 )

(1)写出 A 点坐标;

(2)求 k 1 k 2 的值(用含 n 的代数式表示)

(3)当 - 4 n 4 时,探究 k 1 k 2 的大小关系;

(4)经过点 M ( 2 n + 9 , - 5 n 2 ) 和点 N ( 2 n , 9 - 5 n 2 ) 的直线与抛物线 y 1 = - ( x + 4 ) ( x - n ) y 2 = - ( x + 2 n ) 2 - n 2 + 2 n + 9 的公共点恰好为3个不同点时,求 n 的值.

登录免费查看答案和解析

在平面直角坐标系中,抛物线y1(x4)(xn)与x轴交于点A