优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:困难
  • 人气:155

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx 4 x 轴于 A ( 1 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C

(1)求该抛物线的表达式;

(2)点 P 为第四象限内抛物线上一点,连接 PB ,过点 C CQ / / BP x 轴于点 Q ,连接 PQ ,求 ΔPBQ 面积的最大值及此时点 P 的坐标;

(3)在(2)的条件下,将抛物线 y = a x 2 + bx 4 向右平移经过点 ( 1 2 0 ) 时,得到新抛物线 y = a 1 x 2 + b 1 x + c 1 ,点 E 在新抛物线的对称轴上,在坐标平面内是否存在一点 F ,使得以 A P E F 为顶点的四边形为矩形,若存在,请写出点 F 的坐标;若不存在,请说明理由.

参考:若点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,则线段 P 1 P 2 的中点 P 0 的坐标为 ( x 1 + x 2 2 y 1 + y 2 2 )

登录免费查看答案和解析

如图,在平面直角坐标系中,已知抛物线yax2bx−4交x轴于