优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 高中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:104

设等差数列 { a n } 的前 n 项和为 S n a 3 = 4 a 4 = S 3 ,数列 { b n } 满足:对每 n N * , S n + b n , S n + 1 + b n , S n + 2 + b n 成等比数列.

(1)求数列 { a n } , { b n } 的通项公式;

(2)记 C n = a n 2 b n , n N * , 证明: C 1 + C 2 + + C n < 2 n , n N * .

登录免费查看答案和解析

设等差数列{an}的前n项和为Sn,a34,a4S3,数列{