于直线m、n与平面α、β,有下列四个命题:
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α, n⊥β且α⊥β,则m∥n.
其中真命题的序号是( )
A.①② | B.③④ | C.①④ | D.②③ |
如右图,在直四棱柱A1B1C1D1-DABC中,当底面四边形ABCD满足条件______________时,有A1B⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)
如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a.
(1)求证:平面SAB⊥平面SAD;
(2)设SB的中点为M,当为何值时,能使DM⊥MC?请给出证明.
知a,b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是______________.
①两条平行直线;
②两条互相垂直的直线;
③同一条直线;
④一条直线及其外一点.
在上面结论中,正确的编号是_________.(写出所有正确结论的编号)
在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面ADE.
如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,
AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:
(1)PA⊥BD;
(2)平面PAD⊥平面PAB.
试题篮
()