已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
设过点的直线
分别与
正半轴,
轴正半轴交于
两点,
为坐标原点,则三角形
面积最小时直线方程为
如右图,在平面直角坐标系中,已知“葫芦”曲线
由圆弧
与圆弧
相接而成,两相接点
均在直线
上.圆弧
所在圆的圆心是坐标原点
,半径为
;圆弧
过点
.
(I)求圆弧的方程;
(II)已知直线:
与“葫芦”曲线
交于
两点.当
时,求直线
的方程.
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点、
,点
是直角坐标平面上的动点,若将点
的横坐标保持不变、纵坐标扩大到
倍后得到点
满足
.
(1) 求动点所在曲线
的轨迹方程;
(2)(理科)过点作斜率为
的直线
交曲线
于
两点,且满足
,又点
关于原点O的对称点为点
,试问四点
是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为
的直线
交曲线
于
两点,且满足
(O为坐标原点),试判断点
是否在曲线
上,并说明理由.
已知椭圆C:+
=1(a>b>0)的离心率e=
,左、右焦点分别为F1、F2,点P(2,
),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标.
试题篮
()