优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展
高中数学

(本小题满分12分)某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人。

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分13分)
某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为

   专业
性别
中文
英语
数学
体育


1

1

1
1
1
1

 
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ)求的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量的分布列及其数学期望

  • 题型:未知
  • 难度:未知

(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构
为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600
人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方
图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.

 
(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(2)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中
随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望.

  • 题型:未知
  • 难度:未知

(本题满分12分)
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)


0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879

现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.

(参考公式:其中

  • 题型:未知
  • 难度:未知

(本小题满分12分)
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如下图),

(1)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).

  • 题型:未知
  • 难度:未知

(本题满分10分)
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:

(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:

学生
1号
2号
3号
4号
5号
甲班
6
5
7
9
8
乙班
4
8
9
7
7

(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作,试求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望

  • 题型:未知
  • 难度:未知

(本小题满分12分)甲、乙两名射击运动员参加射击选拔训练,在相同的条件下,两人5次训练的成绩如下表(单位:环)

次数
1
2
3
4
5

6.5
10.2
10.5
8.6
6.8

10.0
9.5
9.8
9.5
7.0

 
(1)请画出茎叶图,从稳定性考虑,选派谁更好呢?说明理由(不用计算)。若从甲、乙两人5次成绩中各随机抽取一次,求抽取的成绩至少有一个低于9.0环的概率;
(2)若从甲、乙两人5次成绩中各随机抽取二次,设抽到10.0环以上(包括10.0环)的次数为,求随机变量的分布列和期望;

  • 题型:未知
  • 难度:未知

(本小题满分13分)在一次抽奖活动中,有甲、乙等7人获得抽奖的机会。抽奖规则如下:主办方先从7人中随机抽取两人均获奖1000元,再从余下的5人中随机抽取1人获奖600元,最后还从这5人中随机抽取1人获奖400元。
(Ⅰ)求甲和乙都不获奖的概率;
(Ⅱ)设X是甲获奖的金额,求X的分布列和均值

  • 题型:未知
  • 难度:未知

现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质良种粒数,则X的期望是:        

  • 题型:未知
  • 难度:未知

医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定: 能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:

(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数为同一组的概率;
②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.

  • 题型:未知
  • 难度:未知

抛掷两枚骰子,当至少有一枚5点或6点出现时,就说试验成功,则在30次独立重复试验中成功的次数X的数学期望是

A. B. C.10 D.20
  • 题型:未知
  • 难度:未知

(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,由此得到样本的空气质量指数频率分布直方图,如图.

(1)求的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

为适应2012年3月23日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,某驾校将小型汽车驾照考试科目二的培训测试调整为:从10个备选测试项目中随机抽取4个,只有选中的4个项目均测试合格,科目二的培训才算通过.已知甲对10个测试项目测试合格的概率均为;乙对其中8个测试项目完全有合格把握,而另2个测试项目却根本不会.
(Ⅰ)求甲恰有2个测试项目合格的概率;
(Ⅱ)记乙的测试项目合格数为,求的分布列及数学期望

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题