优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 随机思想的发展
高中数学

(本小题满分12分)甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是,规定有一方累计2胜或者累计2和时,棋局结束。棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军。设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望。

  • 题型:未知
  • 难度:未知

(本小题满分12分) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望

  • 题型:未知
  • 难度:未知

某公司从大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分).公司规定:成绩在180分以上者到甲部门工作,180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.

(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取8人,再从这8人中选3人,那么至少有一人是甲部门人选的概率是多少?
(2)若从所有甲部门人选中随机选3人,用X表示所选人员中能担任助理工作的人数,写出X的分布列,并求出X的数学期望.

  • 题型:未知
  • 难度:未知

为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过公里的地铁票价如下表:

乘坐里程(单位:



票价(单位:元)



现有甲、乙两位乘客,他们乘坐的里程都不超过公里.已知甲、乙乘车不超过公里的概率分别为,甲、乙乘车超过公里且不超过公里的概率分别为 .
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量,求的分布列与数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分10分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止。若摸出白球,则记2分,若摸出黑球,则记1分。每个球在每一次被取出的机会是等可能的。用x表示甲,乙最终得分差的绝对值.
(1)求袋中原有白球的个数;
(2)求随机变量x的概率分布列及期望Ex.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.

 
优秀人数
非优秀人数
总计
甲班
 
 
 
乙班
 
30
 
总计
60
 
 

(Ⅱ)现已知三人获得优秀的概率分别为,设随机变量表示三人中获得优秀的人数,求的分布列及期望.附: 


0.100
0.050
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

 

  • 题型:未知
  • 难度:未知

(本小题满分12分)国家AAAAA级八里河风景区五一期间举办“管仲杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形如图所示,其中阴影区域的边界曲线近似为函数的图像).每队有3人“成功” 获一等奖,2人“成功” 获二等奖,1人“成功” 获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响).

)求某队员投掷一次“成功”的概率;
)设为某队获奖等次,求随机变量的分布列及其期望.

  • 题型:未知
  • 难度:未知

为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(Ⅰ)设 A 为事件"选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会"求事件 A 发生的概率;
(Ⅱ)设 X 为选出的4人中种子选手的人数,求随机变量 X 的分布列和数学期望.

来源:2015年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

某市 A , B 两所中学的学生组队参加辩论赛, A 中学推荐3名男生,2名女生, B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队
(1)求 A 中学至少有1名学生入选代表队的概率.
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设 X 表示参赛的男生人数,求 X 得分布列和数学期望.

来源:2015年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量 ζ 1 ζ 2 分别表示赌客在一局赌博中的赌金和奖金,则 E ζ 1 - E ζ 2 = (元).

来源:2015年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

n 是一个三位正整数,且 n 的个位数字大于十位数字,十位数字大于百位数字,则称 n 为"三位递增数"(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的"三位递增数"中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的"三位递增数"的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的"三位递增数" ;
(Ⅱ)若甲参加活动,求甲得分 X 的分布列和数学期望 E X .

  • 题型:未知
  • 难度:未知

某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

  • 题型:未知
  • 难度:未知

某厂用鲜牛奶在某台设备上生产 A , B 两种奶制品.生产1吨 A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨 B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天 B 产品的产量不超过 A 产品产量的2倍,设备每天生产 A , B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量 W (单位:吨)是一个随机变量,其分布列为

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利 Z (单位:元)是一个随机变量.

image.png

(Ⅰ)求 Z 的分布列和均值;
(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

来源:2015年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;
(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求的分布列和均值(数学期望).

  • 题型:未知
  • 难度:未知

(本小题满分12 分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望

  • 题型:未知
  • 难度:未知

高中数学随机思想的发展试题