利用数学归纳法证明不等式<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了( )
A.1项 | B.k项 | C.2k-1项 | D.2k项 |
已知数对按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是_________.
如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…)则在第n个图形中共有( )个顶点。
A.(n+1)(n+2) | B.(n+2)(n+3) | C. | D.n |
将全体正整数排成一个三角形数阵:
按照以上排列的规律,第行从左向右的第5个数为 .
如图,△是边长为的正三角形,以为圆心,为半径,沿逆时针方向画圆弧,交延长线于,记弧的长为;以为圆心,为半径,沿逆时针方向画圆弧,交延长线于,记弧的长为;以为圆心,为半径,沿逆时针方向画圆弧,交延长线于,记弧的长为,则 .如此继续以为圆心,为半径,沿逆时针方向画圆弧,交延长线于,记弧的长为,,当弧长时, .
已知,,,...,若 ,( ), 则( )
A.a=5,b=24 | B.a="6," b=31 | C.a="5," b=42 | D.a="6," b=35 |
如图,在杨辉三角形中,斜线的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10, ,记此数列的前项之和为,则的值为( )
A.66 | B.153 | C.295 | D.361 |
(本小题满分12分)已知数列{an}的第一项a1=5且Sn-1=an(n≥2,n∈N*),Sn为数列{an}的前n项和.
(1)求a2,a3,a4,并由此猜想an的表达式;
(2)用数学归纳法证明{an}的通项公式.
试题篮
()