优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,将正方形纸片 ABCD 沿 PQ 折叠,使点 C 的对称点 E 落在边 AB 上,点 D 的对称点为点 F EF AD 于点 G ,连接 CG PQ 于点 H ,连接 CE .下列四个结论中:① ΔPBE ~ ΔQFG ;② S ΔCEG = S ΔCBE + S 四边形 CDQH ;③ EC 平分 BEG ;④ E G 2 - C H 2 = GQ GD ,正确的是   (填序号即可).

来源:2021年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正比例函数 y = x 的图象与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ( 1 , a ) ΔABC 中, ACB = 90 ° CA = CB ,点 C 坐标为 ( - 2 , 0 )

(1)求 k 的值;

(2)求 AB 所在直线的解析式.

来源:2021年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AD / / BC BAD = 90 ° CB = CD ,连接 BD ,以点 B 为圆心, BA 长为半径作 B ,交 BD 于点 E

(1)试判断 CD B 的位置关系,并说明理由;

(2)若 AB = 2 3 BCD = 60 ° ,求图中阴影部分的面积.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,矩形 DEFG 的顶点 D E AB 上,点 F G 分别在 BC AC 上,若 CF = 4 BF = 3 ,且 DE = 2 EF ,则 EF 的长为   

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 AD = 4 E F 分别是边 BC CD 上一点, EF AE ,将 ΔECF 沿 EF 翻折得△ EC ' F ,连接 AC ' ,当 BE =   时, ΔAEC ' 是以 AE 为腰的等腰三角形.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 是边长为1的正方形,点 E 是射线 BC 上的动点,以 AE 为直角边在直线 BC 的上方作等腰直角三角形 AEF AEF = 90 ° ,设 BE = m

(1)如图,若点 E 在线段 BC 上运动, EF CD 于点 P AF CD 于点 Q ,连结 CF

①当 m = 1 3 时,求线段 CF 的长;

②在 ΔPQE 中,设边 QE 上的高为 h ,请用含 m 的代数式表示 h ,并求 h 的最大值;

(2)设过 BC 的中点且垂直于 BC 的直线被等腰直角三角形 AEF 截得的线段长为 y ,请直接写出 y m 的关系式.

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图, AC DB 相交于点 O AB = DC ABO = DCO

求证:(1) ΔABO ΔDCO

(2) OBC = OCB

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O 1 = 2 ,延长 BC 到点 E ,使得 CE = AB ,连接 ED

(1)求证: BD = ED

(2)若 AB = 4 BC = 6 ABC = 60 ° ,求 tan DCB 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为菱形, ABC = 70 ° ,延长 BC E ,在 DCE 内作射线 CM ,使得 ECM = 15 ° ,过点 D DF CM ,垂足为 F ,若 DF = 5 ,则对角线 BD 的长为    . (结果保留根号)

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,将 ABCD 绕点 A 逆时针旋转到 A ' B ' C ' D ' 的位置,使点 B ' 落在 BC 上, B ' C ' CD 交于点 E .若 AB = 3 BC = 4 BB ' = 1 ,则 CE 的长为   

来源:2021年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动.

(1) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一点,且 AE = 1 ,小亮以 BE 为边作等边三角形 BEF ,如图1.求 CF 的长;

(2) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一个动点,小亮以 BE 为边作等边三角形 BEF ,如图2.在点 E 从点 C 到点 A 的运动过程中,求点 F 所经过的路径长;

(3) ΔABC 是边长为3的等边三角形, M 是高 CD 上的一个动点,小亮以 BM 为边作等边三角形 BMN ,如图3.在点 M 从点 C 到点 D 的运动过程中,求点 N 所经过的路径长;

(4)正方形 ABCD 的边长为3, E 是边 CB 上的一个动点,在点 E 从点 C 到点 B 的运动过程中,小亮以 B 为顶点作正方形 BFGH ,其中点 F G 都在直线 AE 上,如图4.当点 E 到达点 B 时,点 F G H 与点 B 重合.则点 H 所经过的路径长为    ,点 G 所经过的路径长为   

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ABC = 90 ° ,以点 C 为圆心, CB 为半径作 C D C 上一点,连接 AD CD AB = AD AC 平分 BAD

(1)求证: AD C 的切线;

(2)延长 AD BC 相交于点 E ,若 S ΔEDC = 2 S ΔABC ,求 tan BAC 的值.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,线段 MN 在对角线 BD 上运动,若 O 的面积为 2 π MN = 1 ,则 ΔAMN 周长的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于 A A ' 两点,若在 y 轴上存在点 T ,使得 ATA ' = 90 ° ,且 TA = TA ' ,则称 A A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.

(1)①如图,在点 B ( 2 , 0 ) C ( 0 , - 1 ) D ( - 2 , - 2 ) 中,点 M 的关联点是   B  (填" B "、" C "或" D " )

②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是   

(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;

(3)分别以点 E ( 4 , 2 ) Q 为圆心,1为半径作 E Q .若对 E 上的任意一点 G ,在 Q 上总存在点 G ' ,使得 G G ' 两点互相关联,请写出点 Q 的坐标.

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题